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We calculate all multipoint correlation functions of all local bond modifications in the two-dimensional
Abelian sandpile model, both at the critical point, and in the model with dissipation. The set of local bond
modifications includes, as the most physically interesting case, all weakly allowed cluster variables. The
correlation functions show that all local bond modifications have scaling dimension 2, and can be written as
linear combinations of operators in the central charge −2 logarithmic conformal field theory, in agreement with
a form conjectured earlier by Mahieu and Ruelle in Phys. Rev. E64, 066130s2001d. We find closed form
expressions for the coefficients of the operators, and describe methods that allow their rapid calculation. We
determine the fields associated with adding or removing bonds, both in the bulk, and along open and closed
boundaries; some bond defects have scaling dimension 2, while others have scaling dimension 4. We also
determine the corrections to bulk probabilities for local bond modifications near open and closed boundaries.

DOI: 10.1103/PhysRevE.71.016140 PACS numberssd: 05.65.1b, 45.70.2n

I. INTRODUCTION

Self-organized criticality may be the underlying cause of
power laws in a wide range of natural and man-made phe-
nomenaf1,2g. Systems exhibiting self-organized criticality
naturally approach a critical state, without any intrinsic time
or distance scales. The critical point is reached without any
fine-tuning of parameters. This is unlike most critical points
seen in physics—for example, the Ising model is only critical
at a single, very specific, temperature. This lack of fine-
tuning is essential if we are to understand power laws in
nature, where no fine-tuning is possible.

Since the concept of self-organized criticality was intro-
duced by Bak, Tang, and Wiesenfeld in 1987, a number of
models have been developed to investigate this phenomenon
f3g. However, the original model, the two-dimensional, iso-
tropic, Abelian sandpile modelsASMd, is still one of the
simplest and most interesting of the models. The ASM is
simple and robust, which are necessary features for any
model of self-organized criticality. While natural phenomena
are quite complex, any model that seeks to explain the ubiq-
uity of power laws in nature must, paradoxically, be very
simple; if we are to have a robust model for the generation of
power laws, we must neither have finely tuned parameters,
nor finely tuned rules.

The ASM is defined on a lattice of sites, and is described
by a toppling matrixD, whose dimension is equal to the
number of sites in the sandpile. The sandpile evolves sto-
chastically. In each time step, a grain of sand is added to a
random site. Then, sites are checked for stability. If the num-

ber of grains at a siteiW is greater thanDiW,iW.0, then the siteiW

is unstable, and topples, losingDiW,iW grains, while every other
site jW gains −DiW,jWù0 grains.sGenerally,DiW,jW is zero except

when jW neighbors iW.d Typically, models are conservative,
which means that each toppling in the bulk conserves the

total number of grainsso jWDiW,jW=0d. Only for topplings along
the boundary, where grains can fall off the edge, can the total
number of grains change. We continue toppling unstable sites
until no sites are unstable. Then, we begin a new time step,
and again add a grain to a random site.

The ASM is surprisingly tractablef4–6g. We only briefly
cover some of the essential points here—for comprehensive
reviews, see Refs.f7,8g.

After a large number of time steps, the ASM reaches a
well-defined distribution of states. Of the stable height con-
figurations, some are transient, and occur with probability
zero after a long amount of time. All other states are recur-
rent, and occur with equal probability. Dhar showed that the
total number of recurrent states is just detsDd f5g. This is also
equal to the number of spanning trees that can be drawn on
the lattice, showing a connection between the sandpile and
spanning tree problemsf6g.

These statements hold for all ASMs, which define a large
class of models. Now, we specialize to the two-dimensional,
conservative, isotropic ASM, which is defined on a two-
dimensional square lattice, where each site has a maximum
height of 4, and where upon toppling at any site, one grain is
sent to each of the site’s four neighbors. Furthermore, we
work in the limit where the lattice is infinite. The two-
dimensional, isotropic, spanning tree problem is equivalent
to the central charge −2 logarithmic conformal field theory
sc=−2 LCFTd f6g, which has the simple Gaussian actionS

=s1/pde]u]̄ū, whereu and ū are complex Grassman vari-
ables. Thec=−2 LCFT is described in Refs.f9–11g. While
the two-dimensional, conservative, isotropic ASM is just one
of many possible ASMs, it is the original, standard, model
f3g, and it is reasonable to simply refer to it as “the ASM,”
which we do for the remainder of this paper.

Calculations of correlation functions, using methods to be
described in the next section, have confirmed that there is a
relationship between the ASM andc=−2 LCFT. Two-point
correlation functions of unit height variables decay as 1/r4 in
the bulk f4g, as do all two-point height correlations along
open and closed boundariesf12g; these correlations can be*Electronic address: mjeng@siue.edu
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understood as equivalent to correlations of LCFT operators.
Furthermore, calculations of certain three-point correlation
functions of heights along closed boundaries, and all multi-
point correlations of heights along open boundaries, have
allowed LCFT field identifications for heights along bound-
ariesf13,14g.

The ASM is not robust to all perturbations. If we relax the
constraint that the model be conservative, and instead allow
grains to be lost in any bulk topplingsi.e., allow dissipationd,
correlations decay exponentially, and we are taken off the
critical point f15–17g. The condition of conservation can be
considered a “natural” one, rather than one requiring “fine-
tuning.” Deeper probes of the the conformal structure can be
obtained by looking at correlations both on and off the criti-
cal point.

Mahieu and Ruelle calculated a number of off-critical cor-
relation functions of certain height configurations, known as
weakly allowed clusterssWACsd, and used their correlation
functions to propose field identifications for the 14 simplest
WACs f18g. They found that their correlation functions could
be explained by assuming that all 14 WACs took the form

fszd = −HA:]u]̄ū + ]̄u]ū: + B1:]u]ū + ]̄u]̄ū: + iB2:]u]ū

− ]̄u]̄ū: +
CPsSdM2

2p
:uū:J . s1d

The coefficientsA,B1,B2,C, and PsSd vary from WAC to
WAC. PsSd is the probability for the cluster at the critical
point, andM is the mass, a measure of how far the model is
from the critical point. The correlation functions that they
used were mostly two-point functions along horizontal or
diagonal axes, as well as some three-point and four-point
functions for the two simplest WACs.

While these calculations provide strong evidence for the
identification of the ASM with thec=−2 LCFT, and the field
identification in Eq.s1d, the fact that only specific correla-
tions were considered limits the range of the identification. It
would be surprising if new orientations of correlation func-
tions, or new WACs, were found to be inconsistent with Eq.
s1d; but the calculations in Ref.f18g do not rule this possi-
bility out. More importantly, since each correlation function
in Ref. f18g required a new and separate calculation, it is
hard to understand, mathematically, why these results oc-
curred. While their end results showed that certain correla-
tions of WACs in the ASM are equal to correlations of Eq.
s1d in the LCFT, it was not mathematically transparent as to
why this should be. Nor was it clear why, or if, the same
coefficients would appear in other properties, such as off-
boundary correlations, or correlations with defects.

Here, we calculate all correlation functions of all local
bond modificationssLBMsd, for arbitrary numbers and types
of LBMs at arbitrary positionssfar from one anotherd; our
calculations confirm that all LBMs should receive the field
identification in Eq.s1d. By LBMs, we mean any set of local
changes in the sandpile toppling rules. For the ASM at the
critical point, we will assume that the LBMs are conservative
sdo not create or destroy grainsd. Since all WACs can be
calculated by LBMs, our results automatically include all

correlations of WACs. While the WACs are the most impor-
tant types of LBMs, and the easiest to find probabilities of, in
numerical simulations, we generally discuss our results in
terms of LBMs, to emphasize the generality of our results.
We give closed form expressions forA,B1,B2, and C, and
describe methods that allow rapid calculation of these coef-
ficients. While a computer is needed for the calculation of
specific A,B1, and B2 coefficients, the general calculations
can be done by hand.

By showing how calculation for all LBMs can be done at
once, we make the mathematical structure clearer. For ex-
ample, we can quickly see why the coefficientsA,B1, andB2
appear in other properties. We illustrate this by looking at
off-boundary LBM probabilities, and correlations with bond
defectsseither in the bulk, or along a boundaryd. Interest-
ingly, we find that some bond defects are represented by a
LCFT operator with a scaling dimension of 4. Until now, all
snonderivatived fields in the ASM have been found to be
dimension 0 or 2.

While our calculations have been done in both the normal
ASM and the ASM with dissipation, we focus our discussion
on the simpler analysis at the critical point, and only discuss
the more complicated massive correlations in the last section,
and in the appendixes.

II. WEAKLY ALLOWED CLUSTER VARIABLES

The methods used in this paper are not powerful enough
to calculate probabilities and correlations for any height con-
figurations. Even the calculation of the probability for a site
to have height 2 requires much more complicated methods
f19g, and the correlation function of two height 2 variables
remains unknown. This is because the condition for a site to
have height 2 involves a nonlocal condition.

As already stated, the most important LBMs are those
used to calculate properties of WACsf20g. WACs are related
to forbidden subconfigurationssFSCsd. An FSC is a height
configuration over a subset of sitesF, such that for every site

iWPF, the number of neighbors ofiW in F is greater than or

equal to the height atiW. FSCs are important because ASM
height configurations are recurrent if and only if they have
no FSCsf5g. A WAC is a height configuration that contains
no FSCs, but becomes a FSC if any height in the WAC is
decreased by 1. Three WACs are shown on the left side of
Fig. 1.

WACs are analytically tractable because it turns out that
the number of sandpiles with a particular WAC is equal to
the number of recurrent states in a sandpile with modified
toppling rulesf4g. There are actually several different ways
to modify the toppling rules to obtain the WAC probability.
The simplest is, for each connected piece of the WAC, to
remove all but one of the bonds connecting it to the rest of
the lattice—the modified lattices corresponding to the WACs
are shown on the right side of Fig. 1.sSee Ref.f18g for a
discussion of other ways in which the sandpile can be modi-
fied to obtain the WAC probabilities.d In these modified
sandpiles, grains of sand cannot flow along the removed
bonds; to continue to conserve the number of grains during
each toppling, the condition for instability must be decreased
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at the sites at the end of the removed bond. These changes
result in a new toppling matrixD8.

As already stated, the number of recurrent states in the
ASM is detsDd. The number of recurrent states that have the
WAC is given by detsD8d. sWe discuss this equivalence fur-
ther in Sec. V.d So the bulk probability for the WAC is given
by

p =
detsD8d
detsDd

= detsI + BGd, s2d

where we have definedB=D8−D andG=D−1. G is the well-
studied lattice Green functionsat the critical pointd; exact
expressions are known for the Green function between
nearby sites, and asymptotic expressions for the Green func-
tion between distant sitesf21g. While D ,D8, andG all have
large dimensionssequal to the number of sitesd, B is zero
outside of a finite collection of sites. When the bond between

iW and jW is removed,BiW,jW andBjW,iW are both increased by 1, while
BiW,iW and BjW,jW are both decreased by 1. For example, for the
unit height probability, we have

iW jW1 jW2 jW3

B =1
− 3 1 1 1

1 − 1 0 0

1 0 − 1 0

1 0 0 − 1
2

iW

jW1

jW2

jW3

s3d

Here iW is the site fixed at height 1, whilejW1, jW2, and jW3 are the

three sites thatiW has been disconnected from.
For any WAC, the fact thatB is finite-dimensional means

that the height probability can be found by calculating a
simple, finite-dimensional, matrix determinant. All WACs
thus correspond to LBMs. However, many LBMs do not
correspond to WACs. LBMs are simply any sandpile modi-
fications that can be modeled with aB matrix that is conser-
vative severy row and column sums to zerod and symmetric.
Our analysis gives all correlations of LBMs, which thus au-
tomatically gives all correlations of WACs.

III. CORRELATIONS OF LOCAL BOND MODIFICATIONS

For ann-point correlation function of LBMs, we can still
use this method. The only difference is that the removed
bonds are located inn distant clusters; this is illustrated in
Fig. 2. Removal of bonds in this fashion will giveB andG
block matrix structures. For example, for a three-point func-
tion, we will have

B = 1B1 0 0

0 B2 0

0 0 B3
2 , s4d

G = 1G11 G12 G13

G21 G22 G23

G31 G32 G33
2 . s5d

Bu is the modification to the toppling matrix for the set of
bonds removed about theuth LBM. Guu is the Green func-
tion matrix between sites of theuth LBM, and its elements
areOs1d. Guv ,uÞv is the Green function matrix between the
sites of theuth andvth LBMs, and its elements are given by
the bulk Green function,

G0sx,yd = −
1

4p
lnsx2 + y2d −

g

2p
−

ln 8

4p
+ ¯ , s6d

whereg=0.577 21̄ is the Euler-Mascheroni constantf21g.
We work in the limit where the LBMs are all very far from
each other—we assume that any two of then LBMs are the
same order of magnitude,Osrd, apart. Since the Green func-
tion diverges as lnsrd with increasing r, calculation of
detsI+BGd initially looks very difficult. However, every row
of everyBu sums to zero—this follows from the manner in
which we constructedBu, and reflects the fact that grains of
sand are still conserved in each toppling in the bulk of the
modified sandpile. This implies that parts ofGuv that depend
only on the column index make no contribution toBG, and
thus no contribution to the correlation function, detsI+BGd.
So we only care about differencessdiscrete derivativesd of
Green functions between columns ofGuv, and the elements
of Guv are effectivelyOs1/rd, rather thanOsln rd.

For LBMs, everyBu is symmetric, so every column of
every Bu sums to zero. Using the matrix identity

FIG. 1. Some WACs and their corresponding modified
sandpiles. FIG. 2. Modified sandpile for a WAC two-point correlation.
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detsI+BGd=detsI+GBd, this in turn means that the parts of
Guv that depend only on the row index make no contribution
to the probability. This is, in effect, like taking another dis-
crete derivative of the Green function, so that the elements of
Guv are effectivelyOs1/r2d.

To make this concrete, suppose that the local origin of the
uth LBM is located ats0, 0d, and the local origin of thevth
LBM is located atsxuv ,yuvd=sruv cosfuv ,ruv sinfuvd. The
uth LBM covers a set of sites at locationssk1, l1d, relative to
s0, 0d, and thevth LBM consists of a series of sites at loca-
tions sk2, l2d, relative to sxuv ,yuvd. fk1,k2, l1, and l2 are all
Os1d.g Then, the elements ofGuv all have the formG0sxuv
+k2−k1,yuv+ l2− l1d. The last two paragraphs show that we
only need the parts ofGuv that depend onboth the rowand
column indices. That is, we only need the parts of the Green
function that depend onboth sk1, l1d and sk2, l2d, and can
drop all other terms. Expanding Eq.s6d in powers of 1/ruv,
we find that the lowest-order term not dropped is

G0sxuv + k2 − k1,yuv + l2 − l1d

→ −
1

2pruv
2 fsk1k2 − l1l2d coss2fuvd

+ sk1l2 + k2l1d sins2fuvdg. s7d

The Green function can thus be treated asOs1/r2d for corre-
lations of LBMs. For more general local arrow diagrams,
such as those that appear in the calculations involving the
height two variablef12,19g, theB matrices are not symmet-
ric, and we can no longer drop the parts ofGuv that depend
only on the row index.

To get the connectedn-point function from detsI+BGd,
we need to pick at least one element off the block diagonal in
every block row ofG, and in every block column ofG. This
means, at the minimum, pickingn elements off the block
diagonal ofG, resulting in a leading-order contribution to the
correlation function ofOs1/r2nd—this is the universal part of
the correlation function.

Mahieu and Ruelle showed that for two-point functions,
the constraint of picking only two elements off the block
diagonal allows the correlation function to be written asf18g

detsI + BGd = − pu1
pu2

TrH I

I + Bu1
Gu1u1

3Bu1
Gu1u2

I

I + Bu2
Gu2u2

Bu2
Gu2u1J . s8d

Similarly, they found that the leading-order contribution to
the three-point probability is

detsI + BGd = pu1
pu2

pu3
TrH I

I + Bu1
Gu1u1

Bu1
Gu1u2

3
I

I + Bu2
Gu2u2

Bu2
Gu2u3

I

I + Bu3
Gu3u3

Bu3
Gu3u1J

+ pu1
pu2

pu3
TrH I

I + Bu1
Gu1u1

Bu1
Gu1u3

3
I

I + Bu3
Gu3u3

Bu3
Gu3u2

I

I + Bu2
Gu2u2

Bu2
Gu2u1J .

s9d

More generally, for ann-point correlation, if onlyn terms are
picked off the block diagonal, then the connected correlation
function is given by

detsI + BGd =
s− 1dn+1

n Fp
x=1

n

puxG
3o

s

TrHp
x=1

n F I

I + Bussxd
Gussxdussxd

3Bussxd
Gussxdussx+1dGJ , s10d

where s is summed over all one-to-one mappings from
h1,2,…nj to h1,2,…nj, and we identifyssn+1d with ss1d.
Mahieu and Ruelle wrote Eqs.s8d and s9d in different, but
equivalent, forms.

pu = detsI + BuGuud s11d

is the bulk probability of theuth LBM. fNote that the two
trace terms of Eq.s9d are actually equal. We have written the
three-point function in this form to make clear how the form
generalizes forn-point functions.g

We can rewrite Eq.s7d as

Guv = −
1

2pruv
2 fskWukWv

T − lWulWv
Td coss2fuvd

+ skWulWv
T + lWukWv

Td sins2fuvdg. s12d

kWu is the column vector of the horizontal positions of the sites
of the uth LBM, relative to theuth local origin fi.e., the

elements ofkWu are Os1dg. lWu is the corresponding vector of

vertical positions.kWu and lWu are both lengthNu, whereNu is
the number of sites needed to represent theuth LBM with the
methods of the previous sectionse.g., Nu=4 for the unit
height variabled.

We insert Eq.s12d into Eq. s10d. For each of then Guv’s,
we can pick any of the four matrices of Eq.s12d, resulting in
4n terms. In each of these 4n terms, eachGuv has been re-
placed with the product of a column vector and a row vector.
Using the cyclicity of the trace to move one row vector at the
end of the trace to the start of the trace, we see that each
matrix sI+BuGuud−1Bu is bracketed by a row vector to its
left, and a column vector to its right, producing a 131 ma-
trix. So each of the 4n terms is the product ofn numbers. We
can represent the decisions as to which terms of Eq.s12d to
pick by representingGuv with a 232 matrix,Nuv. The pos-
sible ways to bracketsI+BuGuud−1Bu can be represented
with a 232 matrix,M u. We have
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kW u
T lW u

T

M u ; Scu,kk cu,kl

cu,kl cu,ll
D kWu

lWu

,
s13d

Nuv ;

kW v
T lW v

T

−
1

2pruv
2 Scoss2fuvd sins2fuvd

sins2fuvd − coss2fuvd
D kWu

lWu

. s14d

We have defined

cu,kk ; − pukWu
T I

I + BuGuu
BukWu, s15d

cu,kl ; − pukWu
T I

I + BuGuu
BulWu = − pulWu

T I

I + BuGuu
BukWu,

s16d

cu,ll ; − pulWu
T I

I + BuGuu
BulWu. s17d

Then, the correlation function ofn LBMs is given by

− TrsM u1
Nu1u2

M u2
Nu2u3

¯ M un
Nunu1

d

− hfsn − 1d ! − 1g sother trace termsdj, s18d

where the other trace terms are derived by permutations of
hu1,u2,… ,unj, as in Eq.s10d.

We can compare this to correlation functions of fields in
the c=−2 LCFT. Mahieu and Ruelle proposed that the
WACs are represented, at the critical point, by

fuszud = − hAu:]u]̄ū + ]̄u ] ū: + B1u:]u]ū + ]̄u]̄ū:

+ iB2u:]u]ū − ]̄u]̄ū:j. s19d

fThe “C” term in Eq. s1d only appears off the critical point.g
We can compute connectedn-point correlations of these

fields in thec=−2 LCFT. We use the formulation of thec
=−2 LCFT where the action is

S=
1

p
E d2x:]u]̄ū:, s20d

where we do not integrate over zero modes in expectation
values. Since the theory is Gaussian, to calculate correlation
functions we simply need to take Wick contractions. The
relevant nonzero ones are

k]uszud]ūszvdl = −
1

2szu − zvd2 = −
e−2ifuv

2ruv
2 , s21d

k]̄uszud]̄ūszvdl = −
1

2sz̄u − z̄vd2 = −
e+2ifuv

2ruv
2 . s22d

Each term of Eq.s19d has oneu, and oneū. The only
difference between terms is whether the derivative on theu
is holomorphic or antiholomorhic, and whether the deriva-

tive on theū is holomorphic or antiholomorphic. We can use
a 232 matrix to represent the choice of which terms of
fuszud are picked:

]ū ]̄ū

Fu =
]u

]̄u
SB1u + iB2u Au

Au B1u − iB2u
D .

s23d

The contractions of Eqs.s21d and s22d can then be repre-
sented with the matrix

]u ]̄u

Huv =
]ū

]̄ū
S− e−2iuuv/s2ruv

2 d 0

0 − e+2iuuv/s2ruv
2 d

D .
s24d

The contribution to the correlation function where theū of

the first LBM contracts with theu of the second LBM, theū
from the second LBM contracts with theu of the third LBM,
and so on, is

− TrsFu1
Hu1u2

Fu2
Hu2u3

¯ Fun
Hunu1

d. s25d

Other contractions give other permutations, just as in Eq.
s18d. Finally, M uNuv differs from FuGuv only by a matrix
rotation, which will not affect the trace, if we make the fol-
lowing identifications:

Au =
1

2p
scu,kk + cu,lld, s26d

B1u =
1

2p
scu,kk − cu,lld, s27d

B2u =
1

p
cu,kl. s28d

So the traces in Eqs.s18d and s25d are equal, and all LBMs
are indeed represented by the field in Eq.s19d. These formu-
las for the coefficients have the appropriate transformation
properties under 90° rotations, andx andy reflections.fTech-
nically, the overall sign of Eq.s26d is still undetermined at
this point, since all correlation functions have even numbers
of A’s. To determine the signs of theA’s we need to look at
at least one massive correlation function. We can do this by
consulting the massive three-point function of the unit height
variable in Ref.f18g, or more broadly, by looking at the
general massive correlations in Sec. IX.g

IV. COMPUTATION OF A , B1, AND B2 TERMS

A, B1, andB2, can be calculated on a computer with Eqs.
s26d–s28d and Eqs.s15d–s17d. Evaluating Eqs.s15d–s17d, as
written, requires taking a matrix inverse, which can be com-
putationally time consuming for larger LBMs. The calcula-
tion can be made substantially faster with the following ma-
trix identity, which we state without proof:
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detfI + BsG + KfWgWTdg = detsI + BGd + K detsI + BGd

3SgWT
I

I + BG
BfWD . s29d

This identity holds for any vectorsfW andgW, andc -numberK.
It allows us to compute thec’s in Eqs. s15d–s17d as matrix
determinants, which is faster than computing matrix in-
verses. Furthermore, we note that, in general, certain combi-
nations of rowssand columnsd of Bu will sum to zero, which
means that we can perform a matrix rotation to reduce the
size of the matrix determinant. With these methods, compu-
tation of A, B1, and B2 for the ten simplest WACs takes
roughly one hour, usingMATHEMATICA on a computer with a
1.2-GHz processor. The results agree with those found in
Ref. f18g. Comparison with two of the larger WACs, which
they labelS10 andS11, requires a more detailed discussion of
the mapping between WACs and LBMs, which is done in the
next section.

V. MAPPING BETWEEN WEAKLY ALLOWED CLUSTER
AND LOCAL BOND MODIFICATIONS

We illustrate the mapping between larger weakly allowed
clusters and local bond modifications with the sandpile
modification shown in Fig. 3. In this modified sandpile, a
five-site cluster is separated from the rest of the sandpile,
except by a single bond. The number of states in the modi-
fied sandpile of Fig. 3 is equal to the number of states of the
unmodified ASM where decreasing the five-site cluster’s

left-most siteswhich we call iWd from 2 to 1 makes the five-
site cluster a FSC,and does not produce any larger FSCs
f19g. The condition that the FSC produced be maximal is
necessary for this equivalence, although this condition was

not explicitly stated in Ref.f19g. If changing the height ofiW

from 2 to 1 makes the five-site cluster a FSC, the original
height configurationsbefore this changed must have been one
of the four configurations shown in Figs. 4 and 5. Of these
four configurations, the one in Fig. 4 is not a WAC, while the
three in Fig. 5 are.

Absent other conditions, the configuration in Fig. 4 does
not have the same probability as the configurations in Fig. 5.
The configuration in Fig. 4 is more likely, as an allowed

configuration always stays allowed when a site height is in-
creased. However, for some configurations of heights outside
the five-site cluster, decreasing one of the three height-2 sites

other than the one atiW, to height 1, will create an FSC outside
the five-site cluster, so that Fig. 4 is allowed, but Fig. 5 is
not.

However, if we impose the condition that taking the

height ofiW from 2 to 1 should produce no FSC larger than the
five-site cluster, then all four configurations in Figs. 4 and 5
are equally probable. With this condition, decreasing one of
the height-2 sites in Fig. 4 cannot possibly create an FSC
outside the five-site cluster, since then the union of this FSC
with the five sites would be a larger FSC upon decreasing the

height of iW.
For a WAC, it can be shown that if any height is de-

creased, not only does the WAC become a FSC, but it is not
contained in any larger FSC. Therefore, for the three height
configurations in Fig. 5, the condition that the five-site FSC
generated is maximal is automatic.sHowever, for the con-
figuration in Fig. 4 it is not.d Therefore the probability asso-
ciated with the modified sandpile in Fig. 3 is four times the
probability of any of the three WACs in Fig. 5. It is also four
times the probability of the height configuration in Fig. 4, if
we impose on this configuration the condition that decreas-

ing the height ofiW should produce no FSC larger than the
five-site clustersalthough clearly this is not as physically
interestingd.

In Ref. f18g, the configurations that they labeledS10 and
S11 were not WACs. Once they are modified to be WACs
with the same shape, our values forA, B1, andB2, obtained
with the methods of the previous section, agree with theirs.

Although we chose a specific sandpile modification, the
discussion is easily generalized. Generally, consider sandpile
modifications similar to those in Fig. 3, which separate a
cluster of sites from the rest of the sandpile, except for one
linking site. There will beN possible height configurations in

FIG. 3. Modified sandpile for the height configurations in Figs.
4 and 5.

FIG. 4. A non-WAC with the same shape as the configuration in
Fig. 3.

FIG. 5. Three WACs with the same shape as the configuration in
Fig. 3.
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the cluster that become FSCs if the height of the linking site
is reduced. Some of these will be WACs and some will not.
The probability associated with the lattice modification will
be N times the probability for any individual WAC.sIt will
also beN times the probability for any of the other height
configurations, given the condition that decreasing the height
of the link site should produce no FSC larger than the cluster
in question.d

These issues did not need to be discussed for the simpler
WACs, such as those in Fig. 1sor the other WACs of Ref.
f18gd. For each of the sandpile modifications in the right side
of Fig. 1, only one corresponding WAC height configuration
is possiblesN=1d.

VI. OFF-BOUNDARY EXPECTATION VALUES

These methods allow us to quickly determine the effects
of a number of defects or boundary conditions on all LBMs,
and see that each time, we obtain the same coefficients. In
many cases, a defect or boundary changes the Green function
matrix in a manner such that the change factorizes, taking the

form KfWgWT, for some vectorsfW and gW. Equations29d then
shows that the effects of the change can be written as a linear
combination of thec’s, and thus as a linear combination of
A, B1, andB2.

For example, consider the probability for an LBM located
a distancey from a boundarysopen or closedd. Let the
boundary be aty=0, and x be the coordinate along the
boundary. Then the Green function is modified tof22g

Gopensx1,y1;x2,y2d = G0sx1 − x2, y1 − y2d

− G0sx1 − x2,y1 + y2 + 2d, s30d

Gclosedsx1,y1;x2,y2d = G0sx1 − x2, y1 − y2d

+ G0sx1 − x2,y1 + y2 + 1d. s31d

Placing the local origin of the LBM ats0,yd, the Green func-
tion between pointssk1, l1d and sk2, l2d, relative to this local
origin, wherek1, l1, k2, and l2 are allOs1d, is

Gsk1,l1;k2,l2d = G0sk1 − k2, l1 − l2d ±
k1k2 + l1l2

8py2 + OS 1

y3D .

s32d

In the ±, the top sign is for closed boundaries, and the bottom
sign is for open boundaries. As with Eq.s7d, we have only
kept terms that depend on bothsk1, l1d andsk2, l2d fotherwise,
there would be terms ofOsln yd and Os1/ydg. Then, using
Eq. s29d, keeping only terms ofOs1/y2d, and using the defi-
nitions in Eqs.s26d–s28d and Eqs.s15d–s17d, we immediately
see that the probability for the LBM is

pu 7
Au

4y2 + OS 1

y3D . s33d

This agrees with results for the unit height variable found in
Ref. f22g.

VII. BOND DEFECTS IN THE BULK

We have also used the methods described here to investi-
gate bond defects in the ASM. We change the toppling ma-
trix from the defect-free matrixD0 to

DsiW, jWd = D0siW, jWd + dDsiW, jWd, s34d

dDsiW, jWd =H− kbond if siW, jWd = ssW0,sW0d or siW, jWd = ssW1,sW1d

+ kbond if siW, jWd = ssW0,sW1d or siW, jWd = ssW1,sW0d
J .

s35d

If sW0 andsW1 are adjacent sites, andkbond=1, then this corre-
sponds to removing the bond betweensW0 and sW1. If kbond=
−1, this corresponds to adding a bond betweensW0 andsW1.

The Green function is the inverse of the toppling matrix,
and the effects of this perturbation can be calculated by sum-
ming a geometric series. The result is

GsiW, jWd = G0siW, jWd + k̃bondfG0siW,sW0d − G0siW,sW1dg

3fG0ssW0, jWd − G0ssW1, jWdg, s36d

where

1

k̃bond

−
1

kbond
= G0ssW0,sW0d + G0ssW1,sW1d − G0ssW0,sW1d − G0ssW1,sW0d.

s37d

The correction to the Green function factorizes, just as in Eq.
s29d, and the corrections to the LBM probabilities again de-
pend on the same coefficients. If the two ends of the bond
defect are ats0, 0d and sqx,qyd, whereqx and qy are both
Os1d, then from Eqs.s15d–s17d, Eqs.s26d–s28d, and Eq.s29d,
the probability for a LBM of type u at sx,yd
=sr cosu ,r sinud, for r @1, is

−
k̃bond

4pr4hsqx
2 + qy

2dAu + sqx
2 − qy

2dfB1u coss4ud + B2u sins4udg

+ s2qxqydfB1u sins4ud − B2u coss4udgj. s38d

This is consistent with identifying the bond defect with

−
k̃bond

2p
:sqx]xu + qy]yudsqx]xū + qy]yūd:. s39d

VIII. BOUNDARY OPERATORS AND BOND DEFECTS

It was shown in Ref.f14g that any local arrow diagram
along an open boundary is represented in the LCFT by the
operator

−
2

p
detsI + BuGuudSsyW + 1WdT

I

I + BuGuu
BusyW + 1WdD 3 ]u]ū,

s40d

where yW is the vector of distances perpendicular to the
boundary. The arguments there worked forany local arrow
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diagramsnot just those corresponding to LBMsd, and simi-
larly to our arguments in Sec. III, used the fact that the Green
function along open boundaries falls off as 1/x2. Along
closed boundariessand in the bulkd, the Green function
grows as lnx, so the situation is more complicated, and not

all operators are proportional to]u]ū. sSee, for example, the
operators for the height -2 and -3 variables along closed
boundaries, given in Refs.f13,14g.d However, we can now
derive an expression similar to Eq.s40d for LBMs along
closed boundaries.

The Green function for two sites on a closed boundary,
andx@1 apart, was found in Ref.f22g, using Eq.s31d, to be

Gcloseds0,0;x,0d = −
1

p
lnsxd − S g

p
+

ln 2

2p
D +

1

6px2 + OS 1

x4D .

s41d

Using the recursion relationGD=I in this equation, we can
extend Eq.s41d for pointsOs1d from the boundary:

Gclosedsx1,y1;x + x2, y2d

= Gcloseds0,0;x,0d −
1

p
lnS1 +

x2 − x1

x
D

−
y1sy1 + 1d + y2sy2 + 1d

2psx + x2 − x1d2 +
x2 − x1

3px3 + OS 1

x4D .

s42d

fx1,x2,y1, andy2 are allOs1d.g The Green function diverges
as lnx, but if we are calculating correlations of LBMs along
closed boundaries, we can use the arguments of Sec. III to
see that we only care about the parts of the Green function
matrix that depend on both the row and the column indices.
The part of Eq.s42d that depends on bothsx1,y1d andsx2,y2d
is

Gclosedsx1,y1;x + x2,y2d → −
x1x2

px2 +
x1

2x2 − x1x2
2 + x1y2sy2 + 1d − x2y1sy1 + 1d

px3 + OS 1

x4D . s43d

Using logic identical to that in the bulk case, we can use the
Os1/x2d part, to derive field identifications for LBMs along
closed boundaries:

2

p
detsI + BuGuudSxWT

I

I + BuGuu
BuxWD]u]ū. s44d

xW is the vector of position coordinates parallel to the bound-
ary.

We now introduce a bond defect of strengthkbond, along
an open or closed boundary, between sitessqx1, qy1d and
sqx2,qy2d, that areOs1d apart. These bond defects can be
analyzed as in the previous section. Along an open boundary,
the bond defect is represented by

2

p
k̃bondsqy1 − qy2d2]u]ū, s45d

if qy1Þqy2—i.e., if the bond defect has a vertical component.
On the other hand, if the bond defect is purely horizontal, it
is represented by

2

p
k̃bondsqy1 + 1d2sqx1 − qx2d2]2u]2ū. s46d

A purely horizontal bond along an open boundary is repre-
sented by a dimension 4 operator.

For closed boundaries, the bond defect is represented by

−
2

p
k̃bondsqx1 − qx2d2]u]ū, s47d

if the bond has a horizontal component. If the bond is purely
vertical, it is represented by

−
k̃bond

2p
fqy1sqy1 + 1d − qy2sqy2 + 1dg2]2u]2ū. s48d

Along closed boundaries, it is the purely vertical bonds that
have dimension 4.

We have verified these field identifications of bond de-
fects with more general calculations, involving multiple
fields and multiple bond defects. This required generalizing
Eq. s36d for multiple bond defects. However, the generaliza-
tion is straightforward, and not particularly instructive, so is
not shown here.

IX. ASM WITH DISSIPATION

We now consider the addition of dissipation. As explained
in the introduction, this takes the ASM off the critical point,
as shown by both numerical simulations, and an exact analy-
sis f15–17g. The toppling matrix becomes

DiW,jW = 54 + t if iW = jW

− 1 if iW and jW are nearest neighbors

0 otherwise
6 . s49d

Now, with each toppling in the bulk of the sandpile,t grains
of sand are lost.
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If we set t=0, we get back the original, critical ASM. It
should be noted that the interpretation of the continuoust
→0 limit is potentially problematic. The modification toD
described in Eq.s49d is only sensible for integert. It can be
extended to rationalt f16g. However, fort rational, but not an
integer, the interpretation of the sandpile modificationssi.e.,
the B matrixd associated with a WAC is changed, so that
what is meant by taking a limit of infinitesimally small, ra-
tional t is unclear. However, presumably the fact that the
massive results are good for all integerst.0 can justify an
analytic continuation tot=0. Regardless, we are certainly
able to formally expand all correlation functions in Taylor
series aboutt=0, which is what we do here.

t defines an effective massM for the sandpile, wheret
=a2M2 f18g. a can be thought of as the lattice spacing. In
looking at off-critical correlations of LBMs, we are inter-
ested in correlation functions where the number of lattice
spacings between any two of the LBMs isOsr /ad. Taking the
a→0 limit then defines the way in which we simultaneously
take t→0 and distances between LBMs to infinity.

For the off-critical sandpile, as discussed in Ref.f18g, we
can use the same methods as before to calculate correlations,
with two modifications. First, we need to use a differentB
matrix than before. Previously, we required that our sandpile
modifications be conservative, which meant that each row
and each column ofB summed up to zero. However, for the
massive sandpile we will often want to consider nonconser-
vative B’s. fFor the unit height variable, the sandpile modi-

fication in Eq.s3d will no longer restrict the height ofiW to 1,
but rather to any height from 1 to 1+t.g We are most inter-
ested in LBMs associated with WACs. If we want to force
the heights to the heights of the WAC, theB matrix must be
changed to

B = Bc − tBnc. s50d

Bc is theB matrix that would be used for this WAC for the
nondissipative ASMfe.g., Eq.s3dg, and

sBncdiW,jW = 51 if iW = jW,andiW is in the WAC

height configuration

0 otherwise
6 . s51d

By “in the WAC height configuration,” we mean in the set of
sites whose heights are fixed, and not in one of the bordering
sites needed to to form theB matrix se.g., for the unit height
configuration, only one site is “in the WAC height configu-
ration”d. More generally, for other LBMs,Bnc is the noncon-
servative part of theB matrix.

Second, we need to use a new Green function between
lattice sites. As always, the Green function is given by the
inverse of the toppling matrix. In Appendix A, we calculate
the Green function in the limitt→0, when the distance be-
tween two sites scales as 1/Ît, and find that it approaches
s1/2pdK0srd, whereK0 is the modified Bessel function of the
second kind. The asymptotic expansion in 1/Ît is then

G0S r cosf

Ît
,
r sinf

Ît
D → 1

2p
K0srd + Îtf1sr,fd + tf2sr,fd

+ Ost3/2d. s52d

We have not calculated thef functions, because they turn out
to not affect the universal parts of any correlation functions.
In principle, they can contain bounded functions of 1/Ît,
such aseir /Ît, but we have not explicitly indicated thist de-
pendence, since it does not affect our analysis.fMahieu and
Ruelle found, forf=0 andf=p /4, Eq. s52d, and the spe-
cific forms of f1 and f2 f18g. They found thatf1=0 for these
angles, so it is possible thatf1=0 for all f, although we have
not investigated this.g

We decomposeGuv as a sum of fourNu3Nv matrices:

Guv = Guv,J + ÎtGuv,row + ÎtGuv,col + tGuv,both. s53d

Guv,J is a matrix in which every element is identical.Guv,row
and Guv,col are matrices in which the elements depend only
on the row index, or only on the column index. Parts ofG
which cannot be written in these forms go intoGuv,both. All
four of these matrices are Taylor series inÎt, whoseOs1d
terms depend only on the Taylor expansion ofs1/2pdK0srd,
and whose higher order terms inÎt depend onf1, f2, etc. For
example, every element ofGuv,J is s1/2pdK0sruvd
+Îtf1sruv ,fuvd+… . The elements ofGuv,row andGuv,col de-
pend on only the coordinates in theuth LBM, or on only the
coordinates in thevth LBM, and thus require one derivative
sfinite differenced of the Green function. The elements of
Guv,both require two or more derivatives of the Green func-
tion.

For correlations at the critical point, we saw that
Guv,J, Guv,row, andGuv,col could all be ignored in calculating
LBM correlations. However, the arguments there relied on
the fact that every row and every column of everyBu
summed to zero. That no longer holds here, and we thus need
to reconsider which terms of the Green function we need to
keep.

We expand the correlation functions in powers oft, and
look for the lowest, nonzero, power oft. As with critical
correlations, to prove the validity of Eq.s10d, we need to
show that the lowest-order term of then-point function only
comes from the parts of detsI+BGd with n terms off the
block diagonal. However, the proof is much harder in this
case; we sketch the proof in Appendix B.

Similarly to Eq.s7d, we need to Taylor expand

G0S 1
Ît

ruv cosfuv + k2 − k1,
1
Ît

ruv sinfuv + l2 − l1D .

s54d

Then, just as in Eq.s12d, we can writeGuv as a sum of terms,
each of which is the product of a lengthNu column vector

and a lengthNv row vector. Defining 1W
u to be the vector of

lengthNu, all of whose entries are 1, we have
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2pGuv = K0sruvd1Wu1Wv
T + fK08sruvd cosfuv

Îtgs1WukWv
T − kWu1Wv

Td

+ fK08sruvd sinfuv
Îtgs1WulWv

T − lWu1Wv
Td − fK0sruvdtg

3fsin2fuvkWukWv
T + cos2fuvlWulWv

T + 1
2 sins2fuvdskWulWv

T

+ lWukWv
Tdg + sK09sruvdtdfcoss2fuvdslWulWv

T − kWukWv
Td

− sins2fuvdskWulWv
T + kWvlWu

Tdg + ¯ . s55d

In the ellipses, we have dropped not only terms ofOst3/2d
and higher, but all terms withf1 or f2. The terms withf1 or
f2 are not necessarily higher order int than the terms shown.

f1 contributes terms ofOsÎtd to 1Wu1Wv
T, and terms ofOstd to

1WukWv
T,1WulWv

T,kWu1Wv
T, and lWu1Wv

T. f2 contributes terms ofOstd to

1Wu1Wv
T. Similarly to Eq. s14d, we representGuv with a 333

matrix,Nuv8 , where each element ofNuv8 represents a different
choice of row vector and column vector:

kW v
T lW v

T 1Wv
T

Nuv8 ;
1

2p1− tfsin2fK0 + coss2fdK09g + Ost3/2d st/2dfsins2fdsK0 − 2K09dg + Ost3/2d − K08 cosfÎt + Ostd

st/2d sins2fdsK0 − 2K09d + Ost3/2d − tfcos2fK0 − coss2fdK09g + Ost3/2d − K08 sinfÎt + Ostd

K08 cosfÎt + Ostd K08 sinfÎt + Ostd K0 + Ost1/2d
2 kWu

lWu

1Wu

. s56d

To save space, we have here abbreviatedfuv→f and
K0sruvd→K0. Now, while some of the terms depending onf1

and f2 are OsÎtd and Ostd, they are higher order terms in
Guv,J, Guv,row, Guv,col, andGuv,both, and thus are higher order
in the specific matrix elements ofNuv8 that they contribute to.
We will later see that this justifies dropping them.

Just as in Sec. III, when each off-diagonal Green function
matrix is replaced by the product of a column vector and a
row vector, eachsI+BuGuud−1Bu is bracketed by a row vec-
tor to its left and a column vector to its right, producing a
131 matrix. We thus get a matrix,M u8, similar to theM u of
Eq. s13d. M u8 is 333, rather than 232, because the vectors
bracketingsI+BuGuud−1Bu to the left and to the right can

now bekWu, lWu, or 1Wu.
In principle, when calculatingM u8 ,Bu, andGuu should be

the matrices for the massive sandpile. However, we only
need most elements ofM u8 in the limit t→0 sthis will be
justified shortlyd. In this limit, we replaceBu with Bu,c, and
the elements ofGuu with the normal, well-known, critical
Green function. Thus, to lowest-order, the elements ofM u in
M u8 are unchanged:

cu,kk8 = cu,kk + Ostd, s57d

cu,kl8 = cu,kl + Ostd, s58d

cu,ll8 = cu,ll + Ostd. s59d

For the new entries ofM u8, it is not hard to show that

cu,1k8 ; − pu1Wu
T I

I + BuGuu
BukWu = Ostd, s60d

cu,1l8 ; − pu1Wu
T I

I + BuGuu
BulWu = Ostd, s61d

cu,118 ; − pu1Wu
T I

I + BuGuu
Bu1Wu = − pu1Wu

Ts− tBu,ncd1Wu + Ost2d

= tpuC + Ost2d, s62d

wherepu is the probability for the LBM, andC is defined as
the number of sites in the WAC height configurationfas de-
fined below Eq.s51dg. cu,118 is the only element ofM u8 where
we need theOstd term. Mahieu and Ruelle definedC as the
coefficient in Eq.s1d, and observed that for the 14 WACs that
they considered,C always turned out to always be equal to
the number of sites in the WAC height configurationf18g.
We will see that ourC is the same as theirC, proving that
their observation holds for all WACs.

We now have

M u8 ; 1cu,kk + Ostd cu,kl + Ostd Ostd
cu,kl + Ostd cu,ll + Ostd Ostd

Ostd Ostd tpuC + Ost2d
2 . s63d

The n-point correlation is given by

− TrsM u1
8 Nu1u2

8 M u2
8 Nu2u3

8 ¯ M un
8 Nunu1

8 d

− hfsn − 1d ! − 1g sother trace termsdj. s64d

It is easy to now verify that the higher-order terms int in M u8
and Nuv8 that we dropped in Eqs.s56d and s63d indeed give
contributions ofOstn+1/2d or higher to then-point correlation,
justifying the approximations used. We now have all corre-
lations of LBMs in the ASM with dissipation.

We can show that the correlations we have found are the
same as the correlations of the field in Eq.s1d. Mahieu and
Ruelle proposed that the appropriate massive extension of
the LCFT in Eq.s20d is f18g
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S=
1

p
E d2xH:]u]̄ū: +

M2

4
:uū:J . s65d

This theory is still Gaussian, with correlation functions

kuszudūszvdl = K0sMuzu − zvud, s66d

kuszuduszvdl = 0, s67d

kūszudūszvdl = 0. s68d

Other two-point correlations can then be obtained by taking
holomorphic or antiholomorphic derivatives. Then, just as in
Sec. III, since the theory is Gaussian, we can write the
n-point correlation of Eq.s1d exactly. The result is formally
identical to Eq.s25d, where the analogues ofF andH in Eqs.

s23d and s24d are now 333 fsince theu and ū fields in Eq.
s1d may have holomorphic derivatives, antiholomorphic de-
rivatives, or no derivatives at allg. Using the identifications in
Eqs. s26d–s28d, and t=a2M2, the results agree with the cor-
relation function in Eq.s64d sup to a proportionality factor,
a2nd.
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APPENDIX A: MASSIVE GREEN FUNCTION

The Green function for the ASM with dissipation is the
inverse of the toppling matrixD, given in Eq.s49d. In the
limit of an infinite lattice, this can be found by Fourier trans-
form f18g:

G0sm,nd =E
−p

p dpx

2p
E

−p

p dpy

2p

eispxm+pynd

4 + t − 2 cospx − 2 cospy
.

sA1d

We are interested in this integral either form and n both
Os1d, or for m and n both proportional to 1/Ît, in the limit
t→0.

We saw in Sec. IX, that form andn both Os1d, we only
neededGsm,nd−Gs0,0d, in the limit t→0. But this is just
the standard, dissipation-free, lattice Green function, whose
properties can be looked up in standard references—for ex-
ample, Ref.f21g. So we only need to discuss the case where
m andn are both proportional to 1/Ît:

lim
t→0

G0S r cosf

Ît
,
r sinf

Ît
D = lim

t→0
E

−p

p dpx

2p
E

−p

p dpy

2p

3
eispx cosf+py sin fdr/Ît

4 + t − 2 cospx − 2 cospy
.

sA2d

In the limit t→0, the exponential oscillates infinitely rapidly,
so when multiplied by any function smooth in the limit
t→0, gives an integral of zero. So no error is introduced by

changing the region of integration to a small disc of radiuse
aboutspx,pyd=s0,0d. Similarly, because

1

4 + t − 2 cospx − 2 cospy
−

1

px
2 + py

2 + t
sA3d

is smooth over this region, we can replace the first term with
the second one. Changing to polar coordinates, the integral is

lim
t→0
E

0

e

pdpE
0

2p

da
eiscosf cosa+sin f sin adrp/Ît

s2pd2sp2 + td
. sA4d

With a change of variables, the integral becomes

lim
t→0

G0S r cosf

Ît
,
r sinf

Ît
D =

1

s2pd2E
0

` pdp

p2 + 1
E

0

2p

daeirp cosa

=
1

2p
K0srd, sA5d

whereK0 is the modified Bessel function of the second kind.
To find the leading-order critical limit, we taker →0

swhile r/Ît is still larged, and useKosrd→−lnsrd, reproducing
the first term of Eq.s6d.

APPENDIX B: THE TRACE FORMULA FOR MASSIVE
CORRELATIONS

In this appendix, we sketch the proof that the trace for-
mula in Eq.s10d is valid for all n-point correlations of LBMs
off the critical point. This requires showing that in the deter-
minant detsI+BGd, if we only want terms up toOstnd, we
never need to pick more thann terms off the block diagonal
of I+BG. In other words, when we calculate the determinant
with

detX = o
pPSuXu

s− dpX1,ps1dX2,ps2d ¯ Xn,psnd, sB1d

where p is summed over all permutations ofh1,2,… , uXuj,
we never have more thann of the Xi,psid’s from the off-
diagonal blocks. The off-diagonal blocks ofI+BG all have
the formBuGuv ,uÞv, whereBu andGuv can be written with
Eqs. s50d and s53d. Since every row ofBc,u sums to zero,
Bc,uGuv,J=0, andBc,uGuv,col=0. The off-diagonal block can
thus be written

BuGuv = ÎtBc,uGuv,row + tBc,uGuv,both− tBnc,uGuv,J + Ost3/2d.

sB2d

fWe need theOst3/2d terms for the calculation of the correla-
tion functions in Sec. IX, but do not need their explicit form
for this proof.g Since there are terms ofOsÎtd in the off-
diagonal blocks, naively, to get theOstnd contribution to the
correlation function, we would need parts of the determinant
with up to 2n terms off the block diagonal. So we need to
explain why the terms with more thann terms off the block
diagonal in fact have all their contributions to theOstnd part
of the correlation function cancelsas well as why all the
terms with lower powers oft canceld.

We define a “row matrix” to be a matrix in which the
entries depend only on the row index. When we consider

CONFORMAL FIELD THEORY CORRELATIONS IN THE… PHYSICAL REVIEW E 71, 016140s2005d

016140-11



contributions to detsI+BGd, we consider, for each contribut-
ing matrix element off the block diagonal, whether it is from
Bc,uGuv,row, Bc,uGuv,both, Bnc,uGuv,J, or from the elements of
Ost3/2d or higher. We use several matrix theorems; the first
two are general, not referring specifically toB or G. It is not
hard to show:

Theorem 1. The determinant has zero contribution from
terms that have both a matrix element from a row matrix in
the su,v1d block, and a matrix element from a row matrix in
the su,v2d block.

By “zero contribution,” we mean that while specific terms
in Eq. sB1d may be nonzero, when all such terms are consid-
ered, they cancel. Theorem 1 is easy to prove: ifXab is the
element from thesu,v1d block, andXgd is the element from
the su,v2d block, we get a cancelling contribution fromXad

andXgb. It is somewhat harder to show the following theo-
rem, which we state without proof:

Theorem 2. Suppose thesu,vd block suÞvd is a row ma-
trix, every column of thesv ,vd block sums to one, and for
everyu8Þv, every column of thesv ,u8d block sums to zero.
Then the determinant has zero contribution from the matrix
elements of thesu,vd block; in other words, the determinant
is unchanged if every element of thesu,vd block is set to
zero.

We note thatBc,uGuv,row andBnc,uGuv,J are both row ma-
trices, and that every column ofBc,uGuv,row sums to zero, as
does every column ofBc,uGuv,both. Then, repeatedly applying
theorems 1 and 2 allows us to prove the following:

Theorem 3. In the determinant detsI+BGd, suppose the
su0,u1d block su0Þu1d has a contributing matrix element
from Bc,u0

Gu0u1,row. Then, in the terms that produce a non-
zero contribution to the determinant, there is an ordered se-
quence of distinct block indices,su1,u2,… ,uxd, xù1, such
that for all 1ø i ,x, the sui ,ui+1d block has a term from
−tBnc,ui

Guiui+1,J. Furthermore, either
s1d the sux,uxd block has a term ofOstd or higher, or
s2d there is a term of orderOst3/2d or higher in an off-

diagonal block,sux,ux+1d.

A different sv0,v1d block sv0Þv1d with a matrix element
from Bc,v0

Gv0v1,row will produce an ordered sequence of dis-
tinct block indices,sv1,v2,…vyd, with no elements in com-
mon with su1,u2,…uxd.

Next, for any nonvanishing contribution to the determi-
nant, we define

c1 = number of terms off the block diagonal, sB3d

c2 = number of terms off the block diagonal that are

exactlyOst1/2d, sB4d

c3 = number of terms off the block diagonal that are

Ost3/2d or higher, sB5d

c4 = number of terms on the block diagonal that are

Ostd or higher. sB6d

Theorem 3 shows that each term in the determinant of type
c2 can be associated with a distinct term of typec3 or c4, so
that c3+c4ùc2. The number of powers oft from this contri-
bution to the determinant is thenat least

sc1 − c2 − c3ds1d + c2s1/2d + c3s3/2d + c4s1d ù c1. sB7d

So if we only wantOstnd contributions to the correlation
function we should never have more thann terms off the
block diagonal. Furthermore, we want a connected correla-
tion function, so we should always have exactlyn terms off
the block diagonal. This concludes the proof that Eq.s10d is
valid for off-critical n-point correlations.

To get strict equality in Eq.sB7d, we needc1=n, c4=0,
andc2=c3. Furthermore, the terms of typec3 should be ex-
actly proportional tot3/2. The fact thatc4=0 means that in the
diagonal blocks,I+BuGuu, we can sett=0 at the start of our
calculations, as already seen by other means in Sec. IX.
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