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Conformal field theory correlations in the Abelian sandpile model
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We calculate all multipoint correlation functions of all local bond modifications in the two-dimensional
Abelian sandpile model, both at the critical point, and in the model with dissipation. The set of local bond
modifications includes, as the most physically interesting case, all weakly allowed cluster variables. The
correlation functions show that all local bond modifications have scaling dimension 2, and can be written as
linear combinations of operators in the central charge -2 logarithmic conformal field theory, in agreement with
a form conjectured earlier by Mahieu and Ruelle in Phys. Re%4E066130(2001). We find closed form
expressions for the coefficients of the operators, and describe methods that allow their rapid calculation. We
determine the fields associated with adding or removing bonds, both in the bulk, and along open and closed
boundaries; some bond defects have scaling dimension 2, while others have scaling dimension 4. We also
determine the corrections to bulk probabilities for local bond modifications near open and closed boundaries.
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[. INTRODUCTION total number of graing=;Aj;j=0). Only for topplings along
the boundary, where grains can fall off the edge, can the total
Self-organized criticality may be the underlying cause ofnumber of grains change. We continue toppling unstable sites
power laws in a wide range of natural and man-made pheuntil no sites are unstable. Then, we begin a new time step,
nomena[1,2]. Systems exhibiting self-organized criticality and again add a grain to a random site.
naturally approach a critical state, without any intrinsic ime  The ASM is surprisingly tractablgt—6]. We only briefly
or distance scales. The critical point is reached without angover some of the essential points here—for comprehensive
fine-tuning of parameters. This is unlike most critical pointsreviews, see Ref$7,8].
seen in physics—for example, the Ising model is only critical ~ After a large number of time steps, the ASM reaches a
at a single, very specific, temperature. This lack of fine-well-defined distribution of states. Of the stable height con-

tuning is essential if we are to understand power laws irffigurations, some are transient, and occur with probability
nature, where no fine-tuning is possible. zero after a long amount of time. All other states are recur-
Since the concept of self-organized criticality was intro-fent, and occur with equal probability. Dhar showed that the
duced by Bak, Tang, and Wiesenfeld in 1987, a number ofotal number of recurrent states is just(@t[5]. This is also
models have been developed to investigate this phenomen@glual to the number of spanning trees that can be drawn on
[3]. However, the original model, the two-dimensional, iso-the lattice, showing a connection between the sandpile and
tropic, Abelian sandpile modelASM), is still one of the Spanning tree probleni$].
simplest and most interesting of the models. The ASM is These statements hold for all ASMs, which define a large
simple and robust, which are necessary features for anglass of models. Now, we specialize to the two-dimensional,
model of self-organized criticality. While natural phenomenaconservative, isotropic ASM, which is defined on a two-
are quite complex, any model that seeks to explain the ubiqdimensional square lattice, where each site has a maximum
uity of power laws in nature must, paradoxically, be veryheight of 4, and where upon toppling at any site, one grain is
simple; if we are to have a robust model for the generation ofent to each of the site’s four neighbors. Furthermore, we
power Iaws, we must neither have f|ne|y tuned parametery}lork in the limit where the lattice is infinite. The two-
nor finely tuned rules. dimensional, isotropic, spanning tree problem is equivalent
The ASM is defined on a lattice of sites, and is described© the central charge -2 logarithmic conformal field theory
by a toppling matrixA, whose dimension is equal to the (c=-2 LCFT) [6], which has the simple Gaussian actin
number of sites in the sandpile. The sandpile evolves sto:(l/w)faaga, where # and # are complex Grassman vari-
chastically. In each time step, a grain of sand is added to gples. Thec=—2 LCFT is described in Ref§9—11]. While
random site. Then, sltes are checked for Stability. If the Pumthe two-dimensionaL Conser\/ative, isotropic ASM is just one
ber of grains at a siteis greater tham\;;>0, then the sit¢  of many possible ASMs, it is the original, standard, model
is unstable, and topples, losidg; grains, while every other [3], and it is reasonable to simply refer to it as “the ASM,”
site | gains -A;7=0 grains.(Generally,A;; is zero except Which we do for the remainder of this paper.
when f neighborsf.) Typically, models are conservative Ca!cula'qons of correlatlpn functions, using methods to pe
which means that each toppling in the bulk conserves fh desc_rlbed_ln the next section, have confirmed that the_zre is a
‘I:"elatlonshlp between the ASM argE-2 LCFT. Two-point
correlation functions of unit height variables decay as* 1ri
the bulk[4], as do all two-point height correlations along
*Electronic address: mjeng@siue.edu open and closed boundarigg2]; these correlations can be
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understood as equivalent to correlations of LCFT operatorscorrelations of WACs. While the WACs are the most impor-
Furthermore, calculations of certain three-point correlatiortant types of LBMs, and the easiest to find probabilities of, in
functions of heights along closed boundaries, and all multinumerical simulations, we generally discuss our results in
point correlations of heights along open boundaries, havéerms of LBMs, to emphasize the generality of our results.
allowed LCFT field identifications for heights along bound- We give closed form expressions fér,B,,B,, andC, and
aries[13,14). describe methods that allow rapid calculation of these coef-
The ASM is not robust to all perturbations. If we relax the ficients. While a computer is needed for the calculation of
constraint that the model be conservative, and instead allowpecific A,B;, and B, coefficients, the general calculations
grains to be lost in any bulk topplinge., allow dissipatiop can be done by hand.
correlations decay exponentially, and we are taken off the By showing how calculation for all LBMs can be done at
critical point[15-17. The condition of conservation can be once, we make the mathematical structure clearer. For ex-
considered a “natural” one, rather than one requiring “fine-ample, we can quickly see why the coefficieAt8,, andB,
tuning.” Deeper probes of the the conformal structure can bappear in other properties. We illustrate this by looking at
obtained by looking at correlations both on and off the criti- off-boundary LBM probabilities, and correlations with bond
cal point. defects(either in the bulk, or along a boundarynterest-
Mahieu and Ruelle calculated a number of off-critical cor-ingly, we find that some bond defects are represented by a
relation functions of certain height configurations, known asLCFT operator with a scaling dimension of 4. Until now, all
weakly allowed cluster§WACSs), and used their correlation (nonderivative fields in the ASM have been found to be
functions to propose field identifications for the 14 simplestdimension O or 2.
WACs[18]. They found that their correlation functions could ~ While our calculations have been done in both the normal
be explained by assuming that all 14 WACs took the form ASM and the ASM with dissipation, we focus our discussion
on the simpler analysis at the critical point, and only discuss
H(2) =~ {A:(9033+30(9§ +B1:9000 + 9006: +B,:9000 the more complicated massive correlations in the last section,
and in the appendixes.

——= (SM? —
= 39000 + - 100 (. (1) Il. WEAKLY ALLOWED CLUSTER VARIABLES
The coefficientsA,B;,B,,C, and P(S) vary from WAC to The methods used in this paper are not powerful enough

| to calculate probabilities and correlations for any height con-
figurations. Even the calculation of the probability for a site
to have height 2 requires much more complicated methods
[19], and the correlation function of two height 2 variables
remams unknown. This is because the condition for a site to
rhave height 2 involves a nonlocal condition.

As already stated, the most important LBMs are those
used to calculate properties of WACZ0]. WACs are related

WAC. P(9) is the probability for the cluster at the critica
point, andM is the mass, a measure of how far the model is
from the critical point. The correlation functions that they
used were mostly two-point functions along horizontal or
diagonal axes, as well as some three-point and four-poi
functions for the two simplest WACs.

While these calculations provide strong evidence for the

identification of the ASM with the=-2 LCFT, and the field
identification in Eq.(1), the fact that only specific correla- to forbidden subconfigurationSCs. An FSC is a height

tions were considered limits the range of the identification. Itﬁonf|gurat|on over a subset of S'tESSUCh that for every site

would be surprising if new orientations of correlation func- | € F, the number of neighbors ofin F is greater than or
tions, or new WACs, were found to be inconsistent with Eq.equal to the height at FSCs are important because ASM
(1); but the calculations in Refl18] do not rule this possi- height configurations are recurrent if and only if they have
bility out. More importantly, since each correlation function no FSCg5]. A WAC is a height configuration that contains
in Ref. [18] required a new and separate calculation, it isno FSCs, but becomes a FSC if any height in the WAC is
hard to understand, mathematically, why these results oddecreased by 1. Three WACs are shown on the left side of
curred. While their end results showed that certain correlaFig. 1.
tions of WACs in the ASM are equal to correlations of Eq. WACSs are analytically tractable because it turns out that
(1) in the LCFT, it was not mathematically transparent as tothe number of sandpiles with a particular WAC is equal to
why this should be. Nor was it clear why, or if, the samethe number of recurrent states in a sandpile with modified
coefficients would appear in other properties, such as offtoppling rules[4]. There are actually several different ways
boundary correlations, or correlations with defects. to modify the toppling rules to obtain the WAC probability.
Here, we calculate all correlation functions of all local The simplest is, for each connected piece of the WAC, to
bond modification§LBMSs), for arbitrary numbers and types remove all but one of the bonds connecting it to the rest of
of LBMs at arbitrary positiongfar from one anotheyr our  the lattice—the modified lattices corresponding to the WACs
calculations confirm that all LBMs should receive the field are shown on the right side of Fig. (See Ref[18] for a
identification in Eq(1). By LBMs, we mean any set of local discussion of other ways in which the sandpile can be modi-
changes in the sandpile toppling rules. For the ASM at thdied to obtain the WAC probabilities.In these modified
critical point, we will assume that the LBMs are conservativesandpiles, grains of sand cannot flow along the removed
(do not create or destroy grajnsSince all WACs can be bonds; to continue to conserve the number of grains during
calculated by LBMs, our results automatically include all each toppling, the condition for instability must be decreased
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FIG. 1. Some WACs and their corresponding modified
FIG. 2. Modified sandpile for a WAC two-point correlation.

sandpiles.
at the sites at the end of the removed bond. These changds CORRELATIONS OF LOCAL BOND MODIFICATIONS
result in a new toppling matriA’. For ann-point correlation function of LBMs, we can still

As already stated, the number of recurrent states in th@se this method. The only difference is that the removed
ASM is detA). The number of recurrent states that have theponds are located in distant clusters; this is illustrated in
WAC is given by defA’). (We discuss this equivalence fur- Fig. 2. Removal of bonds in this fashion will gi\& and G
ther in Sec. \} So the bulk probability for the WAC is given block matrix structures. For example, for a three-point func-

by tion, we will have
_dA) e+ BG) ) - E(;)l E? g
- det(A) - ' B= 2 ) (4)
0 0 Bg
where we have defindBl=A’-A andG=A". G is the well-
studied lattice Green functiofat the critical point exact Gu Gz Gy
expressions are known for the Green function between G=|Gy Gy Gy . (5)
nearby sites, and asymptotic expressions for the Green func- Gs Gy Gas

tion between distant sitg21]. While A,A’, andG all have

large dimensiongequal to the number of sitesB is zero By is the modification to the toppling matrix for the set of
outside of a finite collection of sites. When the bond betweerPonds removed about theh LBM. G, is the Green func-

[ andfis removedpB;;j andB;; are both increased by 1, while tion matrix betwee_n sites of thath LBM’ and_lts elements
Bii and B;; are both decreased by 1. For example, for thea.reO(l). Gy, ,U#v is the Green fu_nctlon matrix betwgen the
unit height probability, we have sites of theuth andvth LBMSs, and its elements are given by

the bulk Green function,

> = e e 1 y In8
I E P Go(X,y) == — INOE+y) = ——+ -+, 6
A o(X,y) 47T( y9) om dm (6)
-3 1 1 1 ! . .
1 -1 0 o0 > 3) wherey=0.577 21-- is the Euler-Mascheroni constarii].

B = 1 We work in the limit where the LBMs are all very far from
1 0 -1 0/, each other—we assume that any two of theBMs are the
i1 0 o0 -1/ - same order of magnitud@(r), apart. Since the Green func-

I3 tion diverges as lfr) with increasingr, calculation of

R .. R det(1+BG) initially looks very difficult. However, every row
Herei is the site fixed at height 1, whilp, j,, andj; are the  of everyB,, sums to zero—this follows from the manner in
three sites thait has been disconnected from. which we constructe®,,, and reflects the fact that grains of

For any WAC, the fact thaB is finite-dimensional means sand are still conserved in each toppling in the bulk of the
that the height probability can be found by calculating amodified sandpile. This implies that parts®f, that depend
simple, finite-dimensional, matrix determinant. All WACs only on the column index make no contributionB&, and
thus correspond to LBMs. However, many LBMs do notthus no contribution to the correlation function, detBG).
correspond to WACs. LBMs are simply any sandpile modi-So we only care about differencédiscrete derivativgsof
fications that can be modeled wittBamatrix that is conser- Green functions between columns @f,,, and the elements
vative (every row and column sums to z¢rand symmetric. of G, are effectivelyO(1/r), rather tharO(Inr).

Our analysis gives all correlations of LBMs, which thus au- For LBMs, everyB,, is symmetric, so every column of
tomatically gives all correlations of WACs. every B, sums to zero. Using the matrix identity
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det1+BG)=de{l+GB), this in turn means that the parts of

G, that depend only on the row index make no contribution

to the probability. This is, in effect, like taking another dis-

crete derivative of the Green function, so that the elements of

G,, are effectivelyO(1/r?).
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Buseusuzl + BuzGuzuzBUZGuzul} )
9

I I
X—
1+B,G

Uzl

To make this concrete, suppose that the local origin of thélore generally, for am-point correlation, if onlyn terms are

uth LBM is located at(0, 0), and the local origin of theth
LBM is located at(x,,Yu,)=(ry COS @y, ry, SiNdy,). The
uth LBM covers a set of sites at locatiofis,|,), relative to
(0, 0, and thevth LBM consists of a series of sites at loca-
tions (ky,1,), relative to(xy,,Yuw)  [Ki.Ks,l1, andl, are all
O(1).] Then, the elements dg,, all have the formGg(x,,

+ko—kq,y,, +12-11). The last two paragraphs show that we

only need the parts db,, that depend omoth the rowand

column indices. That is, we only need the parts of the Green

function that depend omoth (k;,l1;) and (k,,l5), and can
drop all other terms. Expanding E() in powers of 1f,,
we find that the lowest-order term not dropped is

Go(Xyy + Ko =Ky, Yy + 12— 17)

1
- F[(klkz = l4l5) cod2¢y,)

uv
+ (kalz + Kol 1) sin(2¢y,)]. (7)
The Green function can thus be treated&/r?) for corre-

picked off the block diagonal, then the connected correlation
function is given by

n

I1 pux}

x=1
I
I+ BUS(X)G

Us(x)Ys(x)

—_1\n+1
ot 8= 2|

n

x> 1y 11

x=1

X B (10

“s(x)G“s(x)”gxﬂ)} ’

where s is summed over all one-to-one mappings from
{1,2,...n} to {1,2,...n}, and we identifys(n+1) with s(1).
Mahieu and Ruelle wrote Eq$8) and (9) in different, but
equivalent, forms.

py=de(l +B,Gy) 11

lations of LBMs. For more general local arrow diagrams,
such as those that appear in the calculations involving th& the bulk probability of theuth LBM. [Note that the two
height two variabld12,19, the B matrices are not symmet- trace terms of Eq(9) are actually equal. We have written the

ric, and we can no longer drop the parts@f, that depend
only on the row index.
To get the connected-point function from dedl+BG),

three-point function in this form to make clear how the form
generalizes fon-point functions]
We can rewrite Eq(7) as

we need to pick at least one element off the block diagonal in
every block row ofG, and in every block column d&. This
means, at the minimum, picking elements off the block
diagonal ofG, resulting in a leading-order contribution to the
correlation function o(1/r?"—this is the universal part of
the correlation function.

Mahieu and Ruelle showed that for two-point functions,
the constraint of picking only two elements off the block
diagonal allows the correlation function to be written 28]

1
I+By, Gy,

I
B,.G

Guu————
u u,u u u,u .
LRI+ B, Gy, 220

GUU:_

1 T _ T
27rr5v[(kuk" IUIU) cog2¢,,)

+ (KIT+1KT) sin(2¢b,,)]. (12

.

k, is the column vector of the horizontal positions of the sites
of the uth LBM, relative to theuth local origin[i.e., the

elements ofk, are O(1)]. Fu is the corresponding vector of

vertical positionsk, and Fu are both lengtiN,,, whereN, is
the number of sites needed to represenuthd_BM with the
methods of the previous sectide.g., N,=4 for the unit
height variablg

We insert Eq(12) into Eq.(10). For each of then G,’s,
o ) o we can pick any of the four matrices of Ed2), resulting in
Similarly, th(—?y found thgt Fhe leading-order contribution t0 4n terms. In each of these'4erms, eaclG,, has been re-
the three-point probability is placed with the product of a column vector and a row vector.
Using the cyclicity of the trace to move one row vector at the
end of the trace to the start of the trace, we see that each
matrix (I+B,G,,) !B, is bracketed by a row vector to its
left, and a column vector to its right, producing &1 ma-
trix. So each of the %terms is the product af numbers. We
can represent the decisions as to which terms of(E). to
pick by representing,,, with a 2X 2 matrix,N,,. The pos-
sible ways to bracketl+B,G,,) ‘B, can be represented
with a 2X 2 matrix, M ,. We have

detl+BG) =-py Py, Tr{

xB (8

I
B, G

u; Susu
1+B,G 17172
Up = uplyg

I
BUZGUZUS]I + BUSGUSUSBU3GU3U1}

det] + BG) = p,, Py, P, Tr{

I
X—
1+B,G

Uglp

+ pulpuzpua Tr BulGU1U3

1+B,G

Uity
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IZI fI tive on thed is holomorphic or antiholomorphic. We can use
. 13 a 2Xx 2 matrix to represent the choice of which terms of
M. = (Cu,kk Cu,kl) Ky (13 ¢u(z,) are picked:
u -
Cukl Cun /1, _ -
a0 a0
KT T __aa(Blu+iB2u A, ) (23
1 [cod2¢,) sin2é,) | K Yoo\ A, Bp-iBy/
NUUE——2 2 \ gin(2 B 5 - . (19 .
G, \SIN2py,) —cod2¢y,)/ | The contractions of Eqg21) and (22) can then be repre-
We have defined sented with the matrix
F——l——BE 15 " o0
C, = - ) —_ —2i
wkk =" PR G o 19 90— e 2 %/(2r2) 0 (24
Hu, =— +2i 6, 24 )
a0 0 —e M %w/(2rg,)
1 - 1 .
C E—pIZT—BI:—prT—Bk _— . . —
uk YNI+B G YT TYUI+BGy, Y The contribution to the correlation function where thef
(16)  the first LBM contracts with the& of the second LBM, the
from the second LBM contracts with theof the third LBM,
N ) and so on, is
C’"E_pl—Bl. (17)
! TUI+B Gy = Tr(Fy,Hu,Fu,Huu,  FuHuu)- (25

Then, the correlation function aof LBMs is given by
= Tr(M ulNuluzM uzNuzua M unNunul)
—{[(n=1)!-1] (other trace terms, (18)

where the other trace terms are derived by permutations of

Other contractions give other permutations, just as in Eq.
(19). Finally, M N,,, differs from F G, only by a matrix
rotation, which will not affect the trace, if we make the fol-
lowing identifications:

{ug,up,...,uy}, as in Eq.(10). A, = i((;u’kk+ Cul)s (26)
We can compare this to correlation functions of fields in 2m
the ¢c=—2 LCFT. Mahieu and Ruelle proposed that the
WACs are represented, at the critical point, by 1
o L By =5 —(Cujwc= Cun) (27)
Bu(Z) =~ {Ay 9090+ 90 9 0: + By, 9000 + 9090 7
+iBy,: 3000 — 96006:}. 19 1
* : 19 Bou= —Cuki: (28)

[The “C” term in Eq. (1) only appears off the critical poirt.

We can compute connectedpoint correlations of these
fields in thec=-2 LCFT. We use the formulation of the
=-2 LCFT where the action is

So the traces in Eq$18) and(25) are equal, and all LBMs
are indeed represented by the field in Etp). These formu-

las for the coefficients have the appropriate transformation
properties under 90° rotations, anadndy reflectionsTech-
nically, the overall sign of Eq(26) is still undetermined at
this point, since all correlation functions have even numbers
where we do not integrate over zero modes in expectationf A's. To determine the signs of th&s we need to look at
values. Since the theory is Gaussian, to calculate correlatioat least one massive correlation function. We can do this by
functions we simply need to take Wick contractions. Theconsulting the massive three-point function of the unit height
relevant nonzero ones are variable in Ref.[18], or more broadly, by looking at the
general massive correlations in Sec.]IX.

1 I
S:—szx:aﬁﬁﬁ:, (20)

o

J— 1 e_2i¢uv
(90(2)30(z,)) = = 5= "o (21)
2(z,-z) 2ry,
v IV. COMPUTATION OF A, B4, AND B, TERMS
1 g2 tw A, B4, andB,, can be calculated on a computer with Egs.

<39(Z“)30(Z”)> =T (22) (26)—28) and Eqgs.(15—(17). Evaluating Eqs(15—(17), as

2z,-7) 2, : : ; val _
o written, requires taking a matrix inverse, which can be com-
Each term of Eq(19) has onef, and oneé. The only  putationally time consuming for larger LBMs. The calcula-
difference between terms is whether the derivative onéthe tion can be made substantially faster with the following ma-
is holomorphic or antiholomorhic, and whether the deriva-trix identity, which we state without proof:
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FIG. 4. Anon-WAC with the same shape as the configuration in
Fig. 3.

I * ? ? ?— configuration always stays allowed when a site height is in-
FIG. 3. Modified sandpile for the height configurations in Figs. Creased' _However, for some configurations of h6|ghts OUtS_'de
4 and 5. the five-site cluster, decreasing one of the three height-2 sites

other than the one zi;,tto height 1, will create an FSC outside
- the five-site cluster, so that Fig. 4 is allowed, but Fig. 5 is
defl + B(G +Kfg')] =de{l + BG) + K def(l + BG) not.
However, if we impose the condition that taking the

1 -
><<9|Tﬂ T BG Bf)- (29 height ofi from 2 to 1 should produce no FSC larger than the
five-site cluster, then all four configurations in Figs. 4 and 5

This identity holds for any vectorfsandgj, andc -numberk,  are equally probable. With this condition, decreasing one of
It allows us to compute the's in Egs. (15—(17) as matrix  the height-2 sites in Fig. 4 cannot possibly create an FSC
determinants' which is faster than Computing matrix in_OUtSide the five-site ClUSter, since then the union of this FSC
verses. Furthermore, we note that, in general, certain combWith the five sites would be a larger FSC upon decreasing the
nations of rowgand columnsof B, will sum to zero, which  height ofi.
means that we can perform a matrix rotation to reduce the For a WAC, it can be shown that if any height is de-
size of the matrix determinant. With these methods, compuereased, not only does the WAC become a FSC, but it is not
tation of A, B4, and B, for the ten simplest WACs takes contained in any larger FSC. Therefore, for the three height
roughly one hour, USINQIATHEMATICA on a computer with a  configurations in Fig. 5, the condition that the five-site FSC
1.2-GHz processor. The results agree with those found igenerated is maximal is automati¢tiowever, for the con-
Ref.[18]. Comparison with two of the larger WACs, which figuration in Fig. 4 it is nod. Therefore the probability asso-
they labelS,g andS, 4, requires a more detailed discussion of ciated with the modified sandpile in Fig. 3 is four times the
the mapping between WACs and LBMs, which is done in theprobability of any of the three WACs in Fig. 5. It is also four

next section. times the probability of the height configuration in Fig. 4, if
we impose on this configuration the condition that decreas-
V. MAPPING BETWEEN WEAKLY ALLOWED CLUSTER ing the height ofi should produce no FSC larger than the
AND LOCAL BOND MODIFICATIONS five-site cluster(although clearly this is not as physically
interesting.

We illustrate the mapping between larger weakly allowed | Ref.[18], the configurations that they label&, and
clusters and local bond modifications with the sandpiIeSll were not WACs. Once they are modified to be WACs
modification shown in Fig. 3. In this modified sandpile, ajith the same shape, our values ®r B, andB,, obtained
five-site cluster is separated from the rest of the sandpilgyjth the methods of the previous section, agree with theirs.
except by a single bond. The number of states in the modi- Ajthough we chose a specific sandpile modification, the
fied sandpile of Fig. 3 is equal to the number of states of thejiscussion is easily generalized. Generally, consider sandpile
unmodified ASM where decreasing the five-site cluster'smodifications similar to those in Fig. 3, which separate a
left-most site(which we calli) from 2 to 1 makes the five- cluster of sites from the rest of the sandpile, except for one
site cluster a FSCand does not produce any larger FSCs linking site. There will beN possible height configurations in
[19]. The condition that the FSC produced be maximal is
necessary for this equivalence, although this condition was

not explicitly stated in Refl19]. If changing the height off
from 2 to 1 makes the five-site cluster a FSC, the original
height configuratioribefore this changemust have been one
of the four configurations shown in Figs. 4 and 5. Of these
four configurations, the one in Fig. 4 is not a WAC, while the
three in Fig. 5 are.
Absent other conditions, the configuration in Fig. 4 does
not have the same probability as the configurations in Fig. 5. FIG. 5. Three WACs with the same shape as the configuration in
The configuration in Fig. 4 is more likely, as an allowed Fig. 3.
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the cluster that become FSCs if the height of the linking site VIl. BOND DEFECTS IN THE BULK

is reduced. Some of these will be WACs and some will not.

The probability associated with the lattice modification will

be N times the probability for any individual WAQIt will

also beN times the probability for any of the other height

configurations, given the condition that decreasing the height PR PR s

of the link site should produce no FSC larger than the cluster AL = Aol + SALLD, (34)

in question). . ..
These issues did not need to be discussed for the simpler = Koond if(i,]) = (5,S) or (i,]) = (51,S)

WACs, such as those in Fig. (br the other WACs of Ref. e PP P2 s o

[18]). For each of the sandpile modifications in the right side * Koona if (i) = (55,8) or (i,) = (5, %)

of Fig. 1, only one corresponding WAC height configuration (35

is possible(N=1).

We have also used the methods described here to investi-
gate bond defects in the ASM. We change the toppling ma-
trix from the defect-free matrid, to

SAG,]) =

If § and§, are adjacent sites, arg,,=1, then this corre-
sponds to removing the bond betwegnand s;. If kyon=

VI. OFF-BOUNDARY EXPECTATION VALUES -1, this corresponds to adding a bond betwggands;.

The Green function is the inverse of the toppling matrix,

These methods allow us to quickly determine the effectsng the effects of this perturbation can be calculated by sum-
of a number of defects or boundary conditions on all LBMs, ming a geometric series. The result is

and see that each time, we obtain the same coefficients. In

many cases, a defect or boundary changes the Green function G(i,)) = Gyfi,]) +~kb0n({eo(f,§o) - Go(i,8)]
matrix in a manner such that the change factorizes, taking the - -
form Kfg', for some vectord and g. Equation(29) then X[Go(So:}) = GolSpi) ], (36)

shows that the effects of the change can be written as a line@fhere
combination of thec’'s, and thus as a linear combination of

A, B, andB,. I S 2\~ 2 2~ o=
For example, consider the probability for an LBM located 7 Koond GolSo:So) + GolS1,50) = ColSo,S1) = GolS1,%0)-
a distancey from a boundary(open or closed Let the bond
boundary be aty=0, and x be the coordinate along the (37)
boundary. Then the Green function is modified 23] The correction to the Green function factorizes, just as in Eq.
(29), and the corrections to the LBM probabilities again de-
GopedX1,Y1:%2,Y2) = GolXg = Xz, Y1~ Y2) pend on the same coefficients. If the two ends of the bond

—Go(X =X Y1 +Y2+2), (30 defect are a0, 0) and (qy,q,), whereq, and g, are both
0O(1), then from Eqgs(15—(17), Eqgs.(26)—(28), and Eq.(29),
. _ _ _ the probability for a LBM of type u at (x,y)
Golosed X1, Y1:X2:Y2) = Go(Xy = X2, Y1~ Y2) =(r cos0,r sin @), for r>1, is

+Go(Xg — X2, Y1 +Y2+1). (3D

k .
Placing the local origin of the LBM &0,y), the Green func-  — ﬁ{((ﬁ +Q0)A, + (0% — G7)[By, CO40) + By, Sin(46)]
tion between pointgk,,l;) and(k,,l,), relative to this local _
origin, wherek,, l;, k,, andl, are allO(1), is +(20,0,)[ By Sin(46) — By, cod46) ]} (38)
This is consistent with identifying the bond defect with
Kyko + 141, 1
Glky, 15Kz 12) = Golky = ko, |1‘|2)18—7Ty2 F : T B -
@2 o 0+ O30 G0+ i) (39)

In the %, the top sign is for closed boundaries, and the bottom
sign is for open boundaries. As with E(), we have only
kept terms that depend on bdih ,1;) and(ks,|,) [otherwise, VIIl. BOUNDARY OPERATORS AND BOND DEFECTS

there would be terms o®(Iny) and O(1/y)]. Then, using It was shown in Ref[14] that any local arrow diagram
Eq. (29), keeping only terms o®(1/y®), and using the defi- along an open boundary is represented in the LCFT by the
nitions in Eqs(26)—(28) and Eqs(15—(17), we immediately  operator

see that the probability for the LBM is

2 R I R _
- —defl + BUGUU)(()7+ 1)T]I—Bu(37+ 1)) X 9696,

1
= ﬁz+o<—3). (33 4 *BBuy
4y y (40)
This agrees with results for the unit height variable found inwhere y is the vector of distances perpendicular to the
Ref. [22]. boundary. The arguments there worked &ory local arrow

016140-7



M. JENG

diagram(not just those corresponding to LBMsand simi-
larly to our arguments in Sec. lll, used the fact that the Green
function along open boundaries falls off asxi./Along
closed boundariegand in the bulk the Green function
grows as Irx, so the situation is more complicated, and not

all operators are proportional wwao. (See, for example, the
operators for the height -2 and -3 variables along closed
boundaries, given in Ref$13,14.) However, we can now

PHYSICAL REVIEW E 71, 016140(2009

Gclosec(xlvyl;x X, yz)

1 Xo — X
:GC|OSEK{010;X10)__In<1+ 2 1)
m X

Yalyi+ D) +yo(yo+1) X=X ( 1 )
- + +0[ = |.
271(X + Xp — X7)? 3mx x4
(42

derive an expression similar to E¢40) for LBMs along
closed boundaries.

The Green function for two sites on a closed boundary,

andx> 1 apart, was found in Ref22], using Eq.(31), to be

Goeed0.0%0) = - In(x) <Z+'”—2>+i+o<i>
closed = = H T T T 27 ra Xt

(41)

Using the recursion relatioBA =1 in this equation, we can

extend Eq.41) for pointsO(1) from the boundary:

[X1,%2,y1, andy, are allO(1).] The Green function diverges
as Inx, but if we are calculating correlations of LBMs along
closed boundaries, we can use the arguments of Sec. Ill to
see that we only care about the parts of the Green function
matrix that depend on both the row and the column indices.
The part of Eq(42) that depends on botlx;,y;) and(x,,Y-)

is

Gelosed X1, Y1, X + X2,Y2) — = 2

X

Using logic identical to that in the bulk case, we can use the
O(1/x?) part, to derive field identifications for LBMs along

closed boundaries:

2 J—
— def(l + BuGuu)( X Bui) 3646. (44
ar

I
{—
]I + BUGUU

XX XeXp = XaX5 + XYa(Y2 + 1) = Xpya(y; + 1) +

o) w“

2. _
- ;kbonc(qxl - qx2)2070070, (47)

if the bond has a horizontal component. If the bond is purely
vertical, it is represented by

k
— 2091 (Gyy + 1) — Gyl + DI2R0520.  (48)

2T

X is the vector of position coordinates parallel to the bound-

ary.
We now introduce a bond defect of strendgh,s along
an open or closed boundary, between sitgs, q,,) and

Along closed boundaries, it is the purely vertical bonds that
have dimension 4.
We have verified these field identifications of bond de-

(Ok2,Gyo), that areO(1) apart. These bond defects can bef_ects with more general calculatio_ns, inv_olving multi_p!e
analyzed as in the previous section. Along an open boundarjields and multiple bond defects. This required generalizing

the bond defect is represented by

2~ _
—koond Gy - Oy2)23606, (45)

if qy, # gy,—i.e., if the bond defect has a vertical component.
On the other hand, if the bond defect is purely horizontal, it

is represented by

2~ _
;kbonc(qyl + 1)2(qx1 - qx2)2&20&26- (46)

Eq. (36) for multiple bond defects. However, the generaliza-
tion is straightforward, and not particularly instructive, so is
not shown here.

IX. ASM WITH DISSIPATION

We now consider the addition of dissipation. As explained
in the introduction, this takes the ASM off the critical point,
as shown by both numerical simulations, and an exact analy-
sis[15-17. The toppling matrix becomes

4+t jfi=j
Aij=1-1 if fandfare nearest neighbors (49)
0 otherwise

A purely horizontal bond along an open boundary is repre-

sented by a dimension 4 operator.

Now, with each toppling in the bulk of the sandpitegrains

For closed boundaries, the bond defect is represented bygf sand are lost.
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If we sett=0, we get back the original, critical ASM. It r cose¢ rsing 1 r

should be noted that the interpretation of the continubus o\ — 7 7 | ~ ZTKo(f) +\tfy(r, @) +tf,(r, @)
—0 limit is potentially problematic. The modification v v

described in Eq(49) is only sensible for integet It can be +0(t%7?). (52)
extended to rationdl[ 16]. However, fort rational, but not an

integer, the interpretation of the sandpile modificatiores, — \ve have not calculated tHefunctions, because they turn out
the B matrix) associated with a WAC is changed, so that, ot affect the universal parts of any correlation functions.
v_vhat is meant by taking a limit of infinitesimally small, ra- |, principle, they can contain bounded functions o1,/
tional t is unclear. However, presumably the fact that theg,ch aset but we have not explicitly indicated thtsde-
massive results are good for all integérsO can justify an  pengence, since it does not affect our analyd#ahieu and
analytic continuation tt¢=0. Regardless, we are certainly g elie found for¢=0 and ¢=m/4, Eq.(52), and the spe-
able to formally expand all correlation functions in Taylor .ific forms of f, andf, [18]. They found thaf,=0 for these

series about=0, which is what we do here. angles, so it is possible thét=0 for all ¢, although we have
t defines an effective madd for the sandpile, wheré ¢ investigated this.

=a®M? [18]. a can be thought of as the lattice spacing. N \we decompos®,, as a sum of fouN, x N, matrices:
looking at off-critical correlations of LBMs, we are inter-
ested in correlation functions where the number of lattice

spacings between any two of the LBMsO$r/a). Taking the Guy = Gy + VtGyy row+ VIGyy oo+ tGyypotn (53)
a— 0 limit then defines the way in which we simultaneously
taket— 0 and distances between LBMs to infinity. Gy, is @ matrix in which every element is identic@,, ;ow

For the off-critical sandpile, as discussed in Ré&B|, we  andG,, ., are matrices in which the elements depend only
can use the same methods as before to calculate correlatiorsh the row index, or only on the column index. PartsGof

with two modifications. First, we need to use a differ@t \which cannot be written in these forms go ir@Q, pour All

matrix than before. Previously, we required that our sandpilgour of these matrices are Taylor series\iy whoseO(1)

modifications be conservative, which meant that each rowerms depend only on the Taylor expansionbf2m)Kq(r),

and each column d8 summed up to zero. However, for the anq whose higher order terms i depend orf,, f,, etc. For

massive sandpile we will often want to consider noNCoNserayample, every element ofGy,, is (1/2mKy(ry,)

vative B's. [For the unit height variable, the sandpile modi- \thy(Tys )+ ... . The elements SG andG ld”&
> v uv » ¥Uv et Uv,row Uv,Co

fication in Eq.(3) will no longer restrict the height dfto 1, pend on only the coordinates in thth LBM, or on only the
but rather to any height from 1 to T4 We are most inter-  coordinates in theth LBM, and thus require one derivative
ested in LBMs associated with WACs. If we want to force (finite difference of the Green function. The elements of

the h6|ght5 to the hE|ghtS of the WAC, tBematrix must be Gu:;,both require two or more derivatives of the Green func-

changed to tion.
For correlations at the critical point, we saw that
B=B.-tB. (50) Gu 31 Guyrow andGy, ¢ could all be ignored in calculating

LBM correlations. However, the arguments there relied on
_ ) ) the fact that every row and every column of evesy
B, is theB matrix that would be used for this WAC for the symmed to zero. That no longer holds here, and we thus need

nondissipative ASMe.g., Eq.(3)], and to reconsider which terms of the Green function we need to
keep.
LT s We expand the correlation functions in powerstoand
1 '_f : _J’an_d' IS |.n the WAC look for the lowest, nonzero, power of As with critical
(Bndij = | height configuration . (51  correlations, to prove the validity of E410), we need to
0 otherwise show that the lowest-order term of thepoint function only

comes from the parts of dé#BG) with n terms off the

. . . . . block diagonal. However, the proof is much harder in this
By “in the WAC height configuration,” we mean in the set of case; we sketch the proof in Appendix B.

sites whose heights are fixed, and not in one of the bordering < .;

sites needed to to form tH& matrix (e.g., for the unit height Similarly to Eq.(7), we need to Taylor expand
configuration, only one site is “in the WAC height configu-
ration”). More generally, for other LBMB,,. is the noncon-
servative part of th& matrix.

Second, we need to use a new Green function between
lattice sites. As always, the Green function is given by the
inverse of the toppling matrix. In Appendix A, we calculate
the Green function in the limit— 0, when the distance be- Then, just as in E¢(12), we can writeG,, as a sum of terms,
tween two sites scales as\t/ and find that it approaches each of which is the product of a lenghh, column vector
(172m)Kq(r), whereK, is the modified Bessel function of the and a lengttN, row vector. Defining } to be the vector of
second kind. The asymptotic expansion in/iLis then lengthN,, all of whose entries are 1, we have

1 1 .
GO<_Eruv COS¢y, + k2 - kl!_JEruv sin ¢y, + I2 - |1) .
v \l

(54)
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. . . - 3/
275G = Kn(r VLAT +[KAr ) cosd. \tl(1 K — kAT In the ellipses, we have dropped not only termsQgt®’?)
Gus = Kolruw)Lu, + [Kol _“U)* dl””j Ik ~ kL) and higher, but all terms with, or f,. The terms withf; or
+ [KY(ru,) sin b, VEI(LT = 1,17) = [Ko(ry,)t] f, are not necessarily higher ordertithan the terms shown.

f, contributes terms oO(\ff) to Lﬂ and terms ofO(t) to

X | SirPehy K KT + COSeb, lT + 3 Sin(26hy,) (KT S s o - - .
[ Pukuk, Pwlil, (2du) 1K', 1,7 k1T, and [, f, contributes terms of(t) to

+Iukv)] + (K u)D[coL 2, ) (11T = K KT) 1,17. Similarly to Eq.(14), we represenG,, with a 3x 3
. I matrlx N/, where each element df, represents a different
= sin(2¢,) (K, + K151+ - (55 choice of row vector and column vector:
|
K M i
s t[sirPKo + Cog24)Ky] + O(t¥2)  (1/2)[sin(2)(Ko— 2K+ Ot — K, cosgit+O(t) | Ky
N/, = o (t/2) sin(2¢) (Ko - 2K§) + O(t¥?) - t{co Ko — cog2¢)Ky] + O(t3) —K.singyt+O(t) | 1,. (56)
™ - >
K{ cosgt + O(t) K sin gt + O(t) Ko+ O(t?) 1,
[
To save space, we have here abbreviatgg— ¢ and 1 i

Ko(ry,) — Ko. Now, while some of the terms depending fgn Ch11="Pul um oLy = = Puly(= tBynd 1, + O(t?)
and f, are O(\t) and O(t), they are higher order terms in uu

Guv.3» Guv.rows Guo.cor @NAG, pot @nd thus are higher order =tp,C +O(t?), (62)
in the specific matrix elements df, that they contribute to.
We will later see that this justifies dropping them. wherep, is the probability for the LBM, and is defined as

Just as in Sec. Ill, when each off-diagonal Green functiorthe number of sites in the WAC height configurat[m de-
matrix is replaced by the product of a column vector and dined below Eq(51)]. ¢ 1, is the only element oM, where
row vector, eachl+B,G,,) B, is bracketed by a row vec- we need theO(t) term. Mahieu and Ruelle deflneml as the
tor to its left and a column vector to its right, producing a coefficient in Eq(1), and observed that for the 14 WACs that
1x 1 matrix. We thus get a matri®,, similar to theM, of  they consideredC always turned out to always be equal to
Eq. (13). M|, is 3X 3, rather than X 2, because the vectors the number of sites in the WAC height configuratidi8].
bracketlng(ﬂ+B Guu) 1B, to the left and to the right can We will see that oulC is the same as thefZ, proving that

now bek,, I, or 1. their observation holds for all WACs.
In principle, when calculating/},,B,,, andG, should be We now have
the matrices for the massive sandpile. However, we only
need most elements &/, in the limit t—0 (this will be Cukkt O(t) ¢+ O(1) o(t)
justified shortly. In this limit, we replaceB, with B, ., and M/ = Cya+O) cyy+O(t) o(t) . (63

the elements of5,, with the normal, well-known, critical
Green function. Thus, to lowest-order, the element®igfin
M| are unchanged:

o(t) o(t) tp,C + O(t?)

The n-point correlation is given by

Cukk = Cuik+ O1), (57)
= Tr(M{ NG MONG MO NG )
Cl=Cuw +O(t 58
=G + OO 59 —{[(n=1)! - 1] (other trace terms. (64)
Cly = Cyy + O(1). (59)

Itis easy to now verify that the higher-order termgin M,
For the new entries o1/, it is not hard to show that andN,, that we dropped in Eq¢56) and (63) indeed give
contr|but|ons ofO(t"172) or higher to then-point correlation,
, N . justifying the approximations used. We now have all corre-
Coa =~ Puluy g s Bk = o, (60)  Jations of LBMs in the ASM with dissipation.
a We can show that the correlations we have found are the
same as the correlations of the field in Efj). Mahieu and
B[ =0 (61) Ruelle proposed that the appropriate massive extension of
u'u

’ T
=-p,l
Cun="Pu the LCFT in Eq.(20) is [18]

U]I + BUGUU
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1 — M? —
S== J dzx{:(waa: + —:00:}.
T 4

This theory is still Gaussian, with correlation functions

(65)

(0(2,) 6(z,)) = Ko(M|z, - 2,), (66)
(6(z,)0(z,)) =0, (67)
(6(z,)6(z,)) =0. (69)

PHYSICAL REVIEW E 71, 016140(2009

changing the region of integration to a small disc of radius
about(py,py)=(0,0). Similarly, because

1 1
4+t—2005px—2COSDy_ |0>2<+p§+t

is smooth over this region, we can replace the first term with
the second one. Changing to polar coordinates, the integral is

(A3)

i(COS ¢ cos artsin ¢ sin a)rp/\t

€ 2 g
li d d
tT?Jo P pJo T 2mAp+y

(A4)

Other two-point correlations can then be obtained by takingnith a change of variables, the integral becomes

holomorphic or antiholomorphic derivatives. Then, just as in )
since the theory is Gaussian, we can write the| Go(f COS¢ 1 sin ¢) _ 1
t—0

Sec. |,

n-point correlation of Eq(1) exactly. The result is formally

identical to Eq.(25), where the analogues BfandH in Egs.
(23) and(24) are now 3X 3 [since thed and 6 fields in Eq.

% 27
- ZJ gdpJ da,eirp cosa
(2m*=Jo P+ 1Jo

= I

vt Vi

1

= Kolr), (A5)
w

(1) may have holomorphic derivatives, antiholomorphic de- 2

rivatives, or no derivatives at llUsing the identifications in

Egs.(26)—(28), andt=a’M?, the results agree with the cor-

relation function in Eq(64) (up to a proportionality factor,
aZn)_
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APPENDIX A: MASSIVE GREEN FUNCTION

whereKg is the modified Bessel function of the second kind.

To fmd the leading-order critical limit, we take—0
(while r/\tis still large), and useK,(r) — —In(r), reproducing
the first term of Eq(6).

APPENDIX B: THE TRACE FORMULA FOR MASSIVE
CORRELATIONS

In this appendix, we sketch the proof that the trace for-
mula in Eq.(10) is valid for all n-point correlations of LBMs
off the critical point. This requires showing that in the deter-
minant defl+BG), if we only want terms up td(t"), we

The Green function for the ASM with dissipation is the never need to pick more thanterms off the block diagonal

inverse of the toppling matrixA, given in Eq.(49). In the

of I[+BG. In other words, when we calculate the determinant

limit of an infinite lattice, this can be found by Fourier trans- with

g (Pxm+pyn)

form [18]:
Go(m,n) = f
277 4+t—-2cosp,—2 cospy
(A1)

We are interested in this integral either for and n both
O(1), or for m andn both proportional to Xt, in the limit
t—0.

We saw in Sec. IX, that fom andn both O(1), we only
neededG(m,n)-G(0,0), in the limit t— 0. But this is just

the standard, dissipation-free, lattice Green function, whoseBuGu, =
properties can be looked up in standard references—for ex-

detX = X (=)PXypX2p@ ** Xnp(): (B1)
PeSix
where p is summed over all permutations ¢f,2,...,|X|},

we never have more than of the X ,;'s from the off-

diagonal blocks. The off-diagonal blocks bfBG all have

the formB G, ,u# v, whereB, andG,,, can be written with
Egs. (50) and (53). Since every row oB., sums to zero,
BcuGuw =0, andB. Gy, co=0. The off-diagonal block can
thus be written

\‘J’tBC,UGUU,rOW + th,uGUU,both_ tBnc,uG‘uv,J + O(tSIZ) .
(B2)

ample, Ref[21]. So we only need to discuss the case where

m andn are both proportional to it:

. r cos¢ rsin
limG ( ¢, d)) f
t—0 \t \t t—>0 —

(px COS ¢+py sin HIriit

4 +t -2 cosp,— 2 cosp,
(A2)

[We need theD(t*?) terms for the calculation of the correla-
tion functions in Sec. IX, but do not need their explicit form
for this proof] Since there are terms (@(\t in the off-
diagonal blocks, naively, to get th@(t") contribution to the
correlation function, we would need parts of the determinant
with up to 2n terms off the block diagonal. So we need to
explain why the terms with more thanterms off the block
diagonal in fact have all their contributions to tB¥t") part

of the correlation function cancehs well as why all the

In the limitt— 0O, the exponential oscillates infinitely rapidly, terms with lower powers of cancel.

so when multiplied by any function smooth in the limit  We define a “row matrix” to be a matrix in which the
t—0, gives an integral of zero. So no error is introduced byentries depend only on the row index. When we consider
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contributions to dé€t+BG), we consider, for each contribut-
ing matrix element off the block diagonal, whether it is from
Be.uGuo.rows BeuGuo,bothy BneuGuo,a» OF from the elements of

O(t*?) or higher. We use several matrix theorems; the firstyon with (Ug,Up, ... Uy).

two are general, not referring specificallyBoor G. It is not
hard to show:
Theorem 1 The determinant has zero contribution from

terms that have both a matrix element from a row matrix in

the (u,v;) block, and a matrix element from a row matrix in
the (u,v,) block.
By “zero contribution,” we mean that while specific terms

in Eq. (B1) may be nonzero, when all such terms are consid-

ered, they cancel. Theorem 1 is easy to prove,if is the
element from theu,v,) block, andX,; is the element from
the (u,v,) block, we get a cancelling contribution froKy, s
andX,. It is somewhat harder to show the following theo-
rem, which we state without proof:

Theorem 2Suppose théu,v) block (u#v) is a row ma-
trix, every column of thguv,v) block sums to one, and for
everyu’' # v, every column of thév,u’) block sums to zero.
Then the determinant has zero contribution from the matri
elements of théu,v) block; in other words, the determinant
is unchanged if every element of tlie,v) block is set to
zero.

We note thaB, G, row @aNd B¢ Gy, ; are both row ma-
trices, and that every column &, ,G, ;o SUMS tO zero, as
does every column dB G, potr Then, repeatedly applying
theorems 1 and 2 allows us to prove the following:

Theorem 3 In the determinant dét+BG), suppose the
(ug,uy) block (up#u4) has a contributing matrix element
from BC,UOGuOulerW. Then, in the terms that produce a non-

PHYSICAL REVIEW E 71, 016140(2009

A different (vg,v,) block (vg#v,) with a matrix element
from Bev,Gugoyprow will produce an ordered sequence of dis-
tinct block indices,(vq,v5,...vy), with no elements in com-

Next, for any nonvanishing contribution to the determi-
nant, we define

¢, = number of terms off the block diagonal, (B3)

¢, = number of terms off the block diagonal that are
exactly O(t*/?), (B4)

¢3 = number of terms off the block diagonal that are
O(t*?) or higher, (B5)

¢, = number of terms on the block diagonal that are
O(t) or higher. (B6)

xl'heorem 3 shows that each term in the determinant of type

C, can be associated with a distinct term of tyg@eor ¢4, SO
thatcs+c,=c,. The number of powers dffrom this contri-
bution to the determinant is thexi least

(€1 = €= C3)(1) + ¢x(1/2) + ¢5(3/2) + ¢4(1) = ;. (BT)

So if we only wantO(t") contributions to the correlation
function we should never have more tharterms off the
block diagonal. Furthermore, we want a connected correla-
tion function, so we should always have exactlyerms off

zero contribution to the determinant, there is an ordered sene plock diagonal. This concludes the proof that Bd) is

guence of distinct block indice$u,,Us,,...,uy), Xx=1, such
that for all 1<i<x, the (u;,u;;;) block has a term from
~tBneuGuu,,, Furthermore, either

(1) the (uy,,uy) block has a term o©(t) or higher, or

(2) there is a term of orde®(t*?) or higher in an off-

diagonal block(uy, Uy, 4).

valid for off-critical n-point correlations.

To get strict equality in Eq(B7), we needc,=n, c,=0,
andc,=cs. Furthermore, the terms of typs should be ex-
actly proportional ta®2. The fact that,=0 means that in the
diagonal blocks]+B,G,,, we can set=0 at the start of our
calculations, as already seen by other means in Sec. IX.
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